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1. Introduction

The study of mathematical practice emphasises social aspects of mathematical reason-
ing, and in particular the role that dialectical negotiation plays in the communal devel-
opment and understanding of concepts, conjectures and proofs (for example, see [10,4]).
Lakatos [12] was the forerunner of these ideas: he held a fallibilist picture of mathemat-
ics in which mathematical reasoning is defeasible, and was interested in studying proof-
as-process, that is, the social processes of proof construction, as opposed to proof-as-
product, that is, the ‘final’ polished products. It is these same informal aspects of math-
ematical reasoning that we are concerned with in this paper: we hold that work in argu-
mentation theory can be applied to informal, defeasible aspects of mathematical reason-
ing; conversely, the fertile domain of mathematical reasoning can be used to evaluate and
extend general argumentation structures.

Lakatos outlined various methods by which proof-as-process develops, and empha-
sised the dialectical aspect in the style of his book, which takes the form of a dialogue in
a classroom. In the following paper we describe our representation of Lakatosian meth-
ods, or patterns of dialogue, in terms of a formal dialogue game, and our implementation
of the game.

The relationship between the study of mathematical practice and argumentation the-
ory is not well-explored, despite deep connections. There are, however, some examples
of bridges between the two fields. While Toulmin initially developed his layout to de-
scribe non-mathematical argument, he did consider some mathematical arguments, for
example, [19, pp.135-136], and he later applied the layout to Theaetetus’s proof that
there are exactly five platonic solids [20]. Since then Aberdein has shown that Toulmin’s
argumentation structure can represent more complex mathematical proofs [3], and Al-
colea [5] applied the structure to meta-level mathematical argument. Krabbe [11] also
considers the relationship between proofs and arguments, exploring the application of
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argumentation-theoretic concepts to mathematical proofs, and presenting a dialectical
and rhetorical view of proofs. Aberdein [4] furthermore elaborates the dialogical con-
text of mathematical argument, in terms of Walton’s six types of dialogue, and proposes
types of proof dialogue in these terms. In [16] Pease et al. identify connections between
standard argumentation structures and Lakatos’s methods and describe a computational
representation of Lakatos’s theory. In [14] Pease and Aberdein explore connections and
overlapping ideas between Lakatos’s theory and theories in argumentation.

2. Lakatos’s patterns of dialogue

Lakatos demonstrated his argument by presenting case studies of the development of
Euler’s conjecture that for any polyhedron, the number of vertices (V ) minus the num-
ber of edges (E) plus the number of faces (F) is equal to two, and Cauchy’s proof of
the conjecture that the limit of any convergent series of continuous functions is itself
continuous. We outline Lakatos’s methods below: crudely speaking, monster-barring is
concerned with concept development, exception-barring with conjecture development,
and the method of proofs and refutations with proof development. However, these are not
independent processes; much of Lakatos’s work stressed the interdependence of these
three aspects of theory formation.

The method of surrender consists of abandoning a conjecture in light of a counter-
example.

Piecemeal exclusion deals with exceptions by excluding a whole class of counterexam-
ples. This is done by generalising from a counterexample to a class of counterexamples
which have certain properties. For instance, the students generalise from the hollow cube
to polyhedra with cavities, and then modify Euler’s conjecture to ‘for any polyhedron
without cavities, V −E +F = 2’.

Strategic withdrawal uses positive examples of a conjecture and generalises from these
to a class of object, and then limits the domain of the conjecture to this class. For in-
stance, the students generalise from regular polyhedra to convex polyhedra, and then
modify Euler’s conjecture to ‘for any convex polyhedron, V −E +F = 2’.

Monster-barring/monster-adjusting is a way of excluding an unwanted counterexam-
ple. This method starts with the argument that a ‘counterexample’ can be ignored because
it is not a counterexample, as it is not within the claimed concept definition. Rather, the
object is seen as a monster which should not be allowed to disrupt a harmonious theorem.
For instance, one of the students suggests that the hollow cube (a cube with a cube-shaped
hole in it) is a counterexample to Euler’s conjecture, since V −E+F = 16−24+12 = 4.
Another student uses monster-barring to argue that the hollow cube does not threaten the
conjecture as it is not in fact a polyhedron. The concept polyhedron then becomes the
focus of the discussion: using this method, the original conjecture is unchanged, but the
meaning of the terms in it may change. Monster-adjusting is similar, in that one reinter-
prets an object in such a way that it is no longer a counterexample, although in this case
the object is still seen as belonging to the domain of the conjecture.
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Lemma incorporation works by distinguishing global and local counterexamples. The
former is one which is a counterexample to the main conjecture, and the latter is a coun-
terexample to one of the proof steps (or lemmas). A counterexample may be both global
and local, or one and not the other. When faced with a counterexample, the first step
is to determine which type it is. If it is both global and local, i.e., there is a problem
both with the argument and the conclusion, then one should modify the conjecture by
incorporating the problematic proof step as a condition. If it is local but not global, i.e.,
the conclusion may still be correct but the reasons for believing it are flawed, then one
should modify the problematic proof step but leave the conjecture unchanged. If it is
global but not local, i.e., there is a problem with the conclusion but no obvious flaw in
the reasoning which led to the conclusion, then one should look for a hidden assumption
in the proof step, then modify the proof and the conjecture by making the assumption an
explicit condition.

Proofs and refutations consists of using the proof steps to suggest counterexamples
(by looking for objects which would violate them). For any counterexamples found, it is
determined whether they are local or global counterexamples, and then lemma incorpo-
ration is performed.

In Lakatos’s case study of Euler’s conjecture the conjecture and each lemma in the
proof are implications, and the structure of the proof is a hypothetical syllogism. While
Lakatos expected that his theory apply to other types of conjecture and other forms of
proof1, we adopt this structure in our formalisation and subsequent implementation.

3. Dialogue protocol for collaborative mathematics

In this section we make the first steps towards specifying a formal system for playing
a game of collaborative mathematics. Here, we define only a protocol while selected
information about other types of rules (such as commitment and transformation rules)
are only mentioned in the informal description of the protocol in the second part of this
section.

A protocol for the Lakatos Game (LG) system describes the possible exchanges
of locutions between a proponent of a proof, P, and an opponent, O. Using lemmas
l, k, ..., the player P is trying to prove that the conjecture c holds. Let also m,n be a
counterexample (a monster) to the conjecture, and r – a class of objects that are positive
or negative examples of c. Lakatos games are an example of persuasion dialogues (see
[17] for an overview). A game consists of attacks, for O, and defences, for P, of the
conjecture c. The rules P4.3 and P10.2 correspond to accepting conjecture c, and P5.8
and P11.2 to rejecting it. In other words, they terminate a collaborative proof.

Referring to the protocol below, P creates a proof in the following way. He proposes
a conjecture, say c1 (P1), which is added to the Conjecture store. Then, the proponent
introduces a lemma, say l (P2), which is added to the Lemma store. P can then add an-
other lemma or complete the proof. If he gives another lemma this loops adding lemmas
k, ... (P3.1). When the proponent stops giving lemmas and wants to complete the proof,

1[12] was published posthumously and Lakatos never considered it to be finished.
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he can execute it by saying ProofDone for: either already introduced conjectures, i.e. all
of them that are in the Conjecture store, e.g. c1 (see P3.2), or for a new conjecture (P3.3),
say c2, that he needs to introduce, e.g. via the method of piecemeal exclusion.

P1 A player P moves first with Conjecture(c);
then each player contribute a locution ac-
cording to the rules below

P2 After Conjecture(c), P introduces a lemma
Lemma(l)

P3 After Lemma(l), P can:

1. perform a sequence of locutions intro-
ducing more lemmas: Lemma(k), ...

2. end the proof of existing conjectures x
by saying: ProofDone(x)

3. end the proof of a new conjecture c by
saying: ProofDone(c)

P4 After ProofDone(c):

1. O can reply Counter(m, c)
2. P can reply StrategicWithdrawaldr(r)
3. O can reply Accept

P5 After Counter(m, c), P can reply:

1. PiecemealExclusion(r)
2. StrategicWithdrawal(r)
3. MonsterBar(m)
4. MonsterAdjust(m)
5. GlobalLemmaInc(l, m) for l
6. LocalLemmaInc(l, m) for l
7. HybridLemmaInc(l, m) for l
8. Surrender

P6 After PiecemealExclusion(r), P replies: Proof-
Done(c)

P7 After StrategicWithdrawal(r), P replies:
ProofDone(c)

P8 After MonsterBar(m), O can reply:

1. MonsterAccept(m)
2. MonsterReject(m)

P9 After MonsterAdjust(m), O can reply:

1. MonsterAccept(m)
2. MonsterReject(m)

P10 After MonsterAccept(m), O can reply:

1. Counter(n, x) for a current conjecture x
2. Accept

P11 After MonsterReject(m), P can reply:

1. PiecemealExclusion(r)
2. Surrender

P12 After GlobalLemmaInc(l, m), P replies: Hid-
denAssLemma(h)

P13 After HiddenAssLemma(h), P replies:
Lemma(k)

P14 After LocalLemmaInc(l, m), P replies:
FixLemma(k, m)

P15 After FixLemma(l, m), P replies: Pre-
vLemma(k, m)

P16 After PrevLemma(l, m), P replies: Lemma(k)
P17 After HybridLemmaInc(l, m), P replies:

ProofDone(c)

The conjecture has typically a form: “For each x, if x has a property A, then it has
a property B” (lemmas have such a form too). After proposing the proof (see the rules
P1–P3), the opponent can attack c by showing a counterexample, i.e. a monster m “there
is an object m that is A, but not B” (P4.1). The proponent has several defences to choose
from: (1) defences that modifies the conjecture (P5.1–P5.2); (2) defences that modifies
the concept A or B (P5.3–P5.4); or (3) defences that modifies the lemmas (P5.5–P5.7).

If the proponent chooses option (1), he needs to introduce a new property into the
conjecture. As a result, he “repairs” the proof and proposes a modified conjecture (P6 and
P7). For example, in the method of piecemeal exclusion, P reformulates the conjecture
to a form “For each x, if x has a property A but not D, then it has a property B”. Next,
the opponent can accept the new conjecture or start a new series of attacks.

If the proponent chooses option (2), his defence strategy is to show that m is not a
counterexample by redefining property A or B. For example, in monster barring method,
P claims that actually m does not have a property A (or more precisely – that m does
not satisfy a new definition of A). In fact, after MonsterBar(m) and MonsterAdjust(m)
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the players start another (embedded) game about the definition of the concept A or B.
This dialogue terminates with O accepting new definition (P8.1 and P9.1), or rejecting it
(P8.2 and P9.2). In the first case, the opponent can continue attacking by using another
counterexample (another monster; P10.1), and in the second – P can continue defending
by using piecemeal exclusion P11.1.

The key difference between the strategies (1) and (2) is that in the first one the
definition of A does not change, but the proponent introduces a new property A’ which
contains those x that are A but not D. On the other hand, in the second case the conjecture
itself does not change, but A obtains a new definition def ’. In other words, the latter
strategy has an impact on the rest of the theory, i.e., it changes the meaning of all other
conjectures that include A.

If option (3) is chosen, P is manipulating lemmas by: (a) adding new, hidden lemma
(P12–P13); (b) replacing faulty lemma (P14–P16); or (c) modifying the conjecture to
incorporate problematic proof step (P17) (see also Sect. 4 for more details on these tech-
niques).

4. Identifying the current proof

The Dialogue Game Execution Platform (DGEP) [21] interprets dialogue game specifi-
cations expressed in an amended version of the Dialogue Game Description Language
(DGDL) and allows for dialogues to take place based on the rules of the specification
whilst creating an Argument Interchange Format (AIF) [7] structure to capture the moves
being made. One of the advantages of using DGEP is that it not only provides a robust
platform for the execution of a dialogue protocol, but also creates argument structures as
a side effect. Although these structures are designed to represent argument, their closest
counterparts in formal logical systems are not formal theories or sets of propositions, but
proofs. If the description of LG in DGDL is adequate, therefore, it should yield proofs in
AIF.

There is, however, a challenge. The infrastructure of the Argument Web is founded
upon several assumptions. One cornerstone is the assumption of monotonicity: once an
argument has been committed to the Argument Web, it is there in perpetuity. Although
individual arguers may change their position or retract their arguments, the arguments
themselves must remain available. In general, monotonicity in the Argument Web [6] can
be considered to be similar to the monotonicity that characterises academic literature as
a whole. Even explicit retractions, which have become infamous lately, are nevertheless
incremental and monotonic additions to the academic record.

However, if the Argument Web is to capture the emerging proofs as they are de-
veloped, extended, redefined and reframed by a Lakatos game, how can the intrinsic
non-monotonicity be reflected by monotonic infrastructure? Our goal is to ensure that
the semantics of the moves in the game, as they are defined in terms of AIF updates,
and expressed in DGDL, should yield argument structures with a specific set of proper-
ties. These argument structures should be submittable to a simple, algorithmic procedure
which will yield precisely the proof that represents the current shared understanding at
any point in the game. To deliver this, the effects that each move has on AIF structures
need to be carefully defined.

For a proponent’s Con jecture(c) and Lemma(li) moves, all that needs to be done
is to add c and the li to the AIF graph. The Proo f Done move is used to establish the
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inferential connection between them (in AIF terms, it adds an RA-node with incoming
edges from each of the li and an outgoing edge to the c). The inference is established by
using proponent’s commitment stores, connecting all those propositions in the Lemmas
commitment store to that in the Con jecture commitment store.

An opponent’s Counter(m,c) move adds m to the graph, and introduces a conflict
between m and c (in AIF this is captured as a CA-node connecting from m to c).

As an example of the proponent’s possible responses to a Counter, GlobalLemmaInc-
orporation connects the opponent’s counterexample, m with a specific lemma, introduc-
ing a new conflict, i.e. CA-node, between m and the specified l. This l is the lemma that
must be replaced to fit in the hidden assumption and, as such, it is also removed from the
Lemmas store. The proponent must next perform a HiddenAssLemma move to provide
the previously missing hidden assumption. This new lemma, lhidden (added to the AIF
graph as an I-node) is added to the Lemma store and the proponent must next perform the
standard Lemma move to replace the initially removed lemma. After which, the propo-
nent can perform a Proo f Done move with the current conjecture to add a new inference.
The DGDL representing the specification of these moves can be seen in Listing 1.

Listing 1: Global Lemma Incorporation

interaction{GlobalLemmaInc, {l,m}, Contradicting,
{<{m},{l}>, DefaultConflict}, "Remove lemma $l",
{

store(remove, {l}, Lemmas)
& move(add, next, HiddenAssLemma,{h},proponent)

}
}

interaction{HiddenAssLemma, {l}, Asserting, {l},
"$l is a lemma",
{

store(add, {l}, Lemmas)
& move(add, next, Lemma, {k}, proponent)

}
}

AIF structures represent one way of handling ‘structured argumentation.’ Other ap-
proaches to structured argumentation, such as that provided by ASPIC+ [18], have been
shown to be compatible, in that it is possible (under certain assumptions) to translate
from AIF to ASPIC+. Prakken has further shown (ibid.) that ASPIC+ structures can be
used to induce abstract argumentation frameworks which can make use of the wide range
of existing argumentation semantics for computing acceptability.

The approach described in this section ensures that as a Lakatos Game is executed,
AIF structures are created which, when translated to ASPIC+, produce abstract argumen-
tation frameworks that under grounded semantics have as acceptable arguments all and
only those elements which correspond to the proof accepted by the participants of the
Lakatos Game.

Thus, determining the most up-to-date status of a proof in a Lakatos Game can be
achieved using TOAST [13] for conversion to ASPIC+ and induction of abstract frame-
works; and Dung-O-Matic [9] for calculation of acceptability semantics.
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5. Further Work and Conclusions

While acknowledging Lakatos’s contribution to the field, fellow philosophers of math-
ematical practice have criticised him for over-reliance on a few case studies, historical
inaccuracy and narrowness of application of his theory [10].

Timothy Gowers recently initiated Polymath [2], a series of experiments in on-
line collaborative mathematics, in which problems are posted online, and an open
invitation issued for people to try to solve them collaboratively, documenting ev-
ery step of the ensuing discussion. The resulting record provides an unusual exam-
ple of fully documented mathematical activity leading to a proof. In [15], Pease and
Martin present an analysis of one such project [1] and describe aspects of it which
follow Lakatosian conversational patterns. They consider the following examples:

Example 1:

Perhaps even the line does not matter! Is it possible to prove that any point and any line will do? (Anony-
mous, 8:31 pm)
No, if you start with two points on the convex hull (ordered in the right way) you stay on the convex hull.
(Thomas H, 8:35 pm)

Example 2:

Ohhh... I misunderstood the problem. I saw it as a half-line extending out from the last point, in which case
you would get stuck on the convex hull. But apparently it means a full line, so that the next point can be
“behind” the previous point. Got it. (Jerzy, 8:31 pm)

In the first example the Anonymous contributor implicitly surrenders the conjecture
that the line does not matter. In the second example, the relevant concept is a ‘line’,
and a potential counterexample is raised. Participants argue that the counterexample is
not valid, monster-barring it, and explain their reasoning, and the original participant
responds by redefining sub-concepts in the conjecture, thus making the problem object
a supporting example. These examples show that Lakatos-style reasoning can be used to
describe real world examples of mathematical conversations.

We have formalised Lakatos’s theory of mathematical discovery and justification as
a dialogue game and then implemented our formalisation. Other than the system by Pease
et al., described in [16], this is the only implementation of Lakatos’s dialogue moves that
we are aware of. While there is a large body of work in Automated Theorem Proving, this
is rarely based on ways in which humans do mathematics. Integrating automated theorem
provers with Lakatos-style exploration could lead to a greater degree of flexibility (for
instance, see [8]). Focusing on informal mathematics and on work which has a more
“human-like flavour” is a challenging but valuable endeavour. We intend to continue this
work along two main axes:

1. Capture more of Lakatos’s theory, including concept-stretching and the method
of proofs and refutations;

2. Run our LG on real world examples such as those described above and refine it
accordingly.

If we are successful then this suggests a new area for dialogue games, capturing fun-
damental aspects of theories of mathematical and scientific discovery and justification.
In addition to furnishing us with a greater understanding of how these processes operate,
this would provide the basis for systems which can be used both to aid mathematicians
in their work and to train students to think and interact in expert-like ways.
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