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Abstract We present DIAMOND, an implementation of Brewka and Woltran’s ab-
stract dialectical frameworks (ADFs). The system uses answer set programming
encodings to compute interpretations of ADFs according to various semantics. We
evaluate the performance of the system using an actual reasoning problem as op-
posed to using randomly generated frameworks.
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1. Introduction

Abstract dialectical frameworks (ADFs) [3] are a powerful generalisation of Dung ar-
gumentation frameworks (AFs) that have recently received considerable attention in the
literature [4, 13, 14]. However, most of this attention has been theoretical in nature. To
open up more practical research avenues for ADFs, we have developed a software suite –
DIAMOND – for computing interpretations for ADFs under various semantics. This paper
is the first comprehensive description of DIAMOND.

An important prerequisite for implementing an approach – to us – is a good knowl-
edge of the computational complexity of the problems to be implemented. This has been
recently studied for ADFs [14], with significant results: ADFs are more complex than
AFs; more precisely, they are one level up in the polynomial hierarchy. However, and
more significantly, there is a subclass of ADFs – bipolar ADFs – that is computation-
ally as complex as AFs, but offers more modelling capacities. In bipolar ADFs we can
not only express AF-like individual attack, but also set attack, set support and individual
support; these notions can also be combined.

ADFs obtain their generality from abstracting away not only from the internals of
arguments, as AFs do, but also from the internals of links between arguments. While a
link between two arguments in an AF is always an individual attack, a link between to
arguments in an ADF (called statements there) can be much more, as mentioned above.
What the link is, actually, is specified by the acceptance condition associated with each
statement. The acceptance condition of a statement s can be represented by a proposi-
tional formula ϕs over the parents of s, that is, over those statements with a direct link
to s.

The AF-like relationship where statements a and b individually attack c can then be
expressed by ϕc = ¬a ∧ ¬b. That is, c is accepted (true) if neither of its attackers is
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accepted (true). A set attack from a and b to c is written as ϕc = ¬a∨¬b where c is only
rejected if both a and b are accepted. The same works for support: ϕc = a∧ b means that
c needs support from both a and b, and ϕc = a ∨ b says that c can be accepted if at least
one of a or b is accepted. And now recall that all these additional means of expression
come for free in terms of computational cost!

Implementing approaches to abstract argumentation has somewhat of a tradition,
as is witnessed by the several implementations for Dung AFs: ASPARTIX [5], Dung-
O-Matic (http://www.arg.dundee.ac.uk/?page_id=279), and ConArg [1].
As ADFs generalise AFs, our system DIAMOND is also yet another AF implementation
(utilising the ASPARTIX input format), but at the same time so much more: DIAMOND
can also compute the semantics for (bipolar) ADFs in various different input formats,
decide whether a given ADF is bipolar, or transform an ADF from one representation into
another. To achieve its ends, DIAMOND employs the declarative programming paradigm
of answer set programming [10].

As the final contribution of this paper, we perform an experimental evaluation of
DIAMOND. However, contrary to previous works in this vein [2], we do not use randomly
generated graphs. Rather, we encode an actual reasoning problem – the factorisation of
integers – into abstract argumentation. We consider this an important contribution in
its own right as it shows that A(D)F implementations can be used to solve non-trivial
problems. Indeed, our results suggest that abstract argumentation implementations may
be more powerful than previously believed, being able to solve problems for AFs with
around 20,000 arguments in less than 10 seconds.

In the rest of the paper, we first give a short background on ADFs. We next describe
how DIAMOND is implemented and give some explanation on its usage; in Section 4
we describe our experimental setup and evaluation. The last section concludes with a
discussion and some avenues for future work. An earlier version of this paper appeared
at a workshop [7].

2. Background

For a serious lack of space, we cannot present all necessary background on abstract di-
alectical frameworks (ADFs), but have to restrict ourselves to the definition of seman-
tics and refer the interested reader to [4]. Roughly, ADFs are directed graphs whose
nodes represent statements. Each statement comes with an acceptance condition, that
can be represented by a propositional formula over its parent statements. The semantics
of ADFs are defined via the characteristic operator ΓD of an ADF D. While most of
the semantics we define now have appeared in the literature before [4], some are new,
but straightforward to define [13]. These are the (three-valued) conflict-free, naive and
stage semantics, as well as so-called semi-models, an ADF version of AFs’ semi-stable
semantics (defined as admissible stages by Verheij [15]).

Definition 1. Let D be an ADF. A three-valued interpretation v is

• admissible iff v ≤i ΓD(v);
• preferred iff it is ≤i-maximal with respect to being admissible;2

• a semi-model iff u(v) is ⊆-minimal with respect to being admissible;

2For an interpretation v over statements S, define u(v) = {s ∈ S | v(s) = u}, likewise for t, f .
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• complete iff ΓD(v) = v, that is, v is a fixpoint of ΓD;
• grounded iff v is the ≤i-least fixpoint of ΓD;
• conflict-free iff for all s ∈ S we have:

if v(s) = t then ΓD(v)(s) 6= f , and if v(s) = f then ΓD(v)(s) = f .
• naive iff it is ≤i-maximal with respect to being conflict-free;
• stage iff u(v) is ⊆-minimal with respect to being conflict-free.

A two-valued interpretation v is a model of D iff ΓD(v) = v; it is a stable model of
D = (S,L,C) iff v is a model of D and all s ∈ t(v) are true in the grounded semantics
of the reduced ADF Dt(v) = (t(v), L ∩ (t(v)× t(v)), Ct(v)), where for s ∈ t(v) the
reduced acceptance formula is given by ϕs[r/f : v(r) = f ].

3. The DIAMOND System

Our software system DIAMOND is a tool-set aimed at argumentation researchers to com-
pute various interpretations with respect to the semantics for a given ADF and to do
different checks (for example, test whether an ADF is bipolar) and transformations.
The heart of the system is a collection of answer set programming encodings which
are designed around the Potsdam Answer Set Solving Collection (Potassco) [9] with
clingo as the primarily used solver. The encodings for DIAMOND are built in a modu-
lar way. To compute the models of an ADF with respect to a semantics, different mod-
ules need to be grounded together to get the desired behaviour. DIAMOND is available
for download and experimentation at sourceforge: https://sourceforge.net/
projects/diamond-adf/. To make the usage of our system more convenient for
the user, it offers a Python-based command line interface. Different switches are used
to designate the desired semantics, the used framework (i.e. Dung AFs, bipolar ADFs,
prioritised ADFs, and general ADFs), the input file, and its format. It is not necessary to
specify the format if it is indicated by the right file extension.

3.1. Input Format

DIAMOND supports these different input formats (and conversions between them):

(i) Propositional formula representation file extension .adf
(ii) Bipolar propositional formula representation file extension .badf

(iii) Priority-based representation file extension .padf
(iv) ASPARTIX syntax for Dung AFs file extension .af
(v) Functional/extensional representation any other file extension

In the following we will describe how the syntax of those formats are defined and how
they are utilised by DIAMOND. All of the input formats use the unary predicate s to
specify the statements of the ADF.

Formats (i) and (ii) use the binary predicate ac(s,ϕ) to associate to each statement
s one propositional formula ϕ. Each formula ϕ is constructed in the usual inductive way,
where atomic formulae are statements and the truth constants true – c(v) – and false –
c(f) –, and the connectives ¬,∧,∨,→,↔ are written as functions neg, and, or,
imp, iff.

https://sourceforge.net/projects/diamond-adf/
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Input in form of (ii) – bipolar ADFs with acceptance formulas – additionally re-
quires the specification of link types. Those are given by the predicates att(a,b) and
sup(a,b), which means that a attacks (respectively supports) b.

Input format (iii) implements the approach on prioritised ADFs by Brewka et al. [4],
to which we refer the interested reader for further details. To describe a prioritised ADF,
the support (i.e. L+) and attack (i.e. L−) links are represented by the binary predicates
lp and lm (i.e. positive resp. negative links). To express a preference, such as a > b, we
use the predicate pref(a,b).

Format (iv) is the input format of ASPARTIX [5], which is a collection of answer set
programming encodings to compute extensions of Dung’s AFs. (The system ConArg [1]
uses the same input format.) There, an argument is represented by the unary predicate
arg and the attack relation is modelled by the binary predicate att.

Input format (v), the extensional representation, defines links between two state-
ments with the binary predicate l, such that l(b,a) reflects that there is a link from
b to a. The acceptance condition is modelled via the unary and tertiary predicates ci
and co. Intuitively ci (resp. co) identifies the parents which need to be accepted, such
that the acceptance condition maps to true (i.e. in) (resp. false (i.e. out)). To achieve a
flat representation of each set of parent statements, we use an arbitrary third term in the
predicate to identify them. To express what happens to a statement when none of the
parents is accepted we use the unary versions of ci and co. (More on the extensional
representation format can be found in [7].)

Example 1. Consider this ADF given in (bipolar) propositional formula representation
(i) with link-type-information of (ii) (on the left) and the functional ASP representation
of the same ADF (on the right):

s(a). s(b). s(c). s(d).
ac(a,c(v)).
ac(b, b).
ac(c, and(a,b)).
ac(d, neg(b)).
sup(b,b). att(b,d).
sup(b,c). sup(a,c).

s(a). s(b). s(c). s(d).
l(a,c). l(b,b). l(b,c). l(b,d).
ci(a).
co(b). ci(b,1,b).
co(c). co(c,1,a). co(c,2,b).
ci(c,3,a). ci(c,3,b).
ci(d). co(d,1,b).

DIAMOND provides different format conversions to switch to an appropriate one. In case
of arbitrary and prioritised ADFs, the input is converted to the extensional format, where
the size of the instance may grow considerably compared to the propositional formula
or priority-based representation. If the ADF is bipolar and the link-types are given, no
conversion will be done. There is also no conversion for Dung AFs if they are given in
ASPARTIX format.

We have chosen this functional representation of acceptance conditions on general
ADFs for pragmatic reasons. An alternative would have been to represent acceptance
conditions by propositional formulas, what is already done for bipolar ADFs. In this
case, computing a single step of the operator would entail solving several NP-hard prob-
lems. The standard way to solve these is the use of saturation [6], which however causes
undesired side-effects when employed together with meta-ASP [11]. Furthermore, other
ADF semantics (e.g. preferred) utilise concepts like ≤i-maximality, which also require
the use of meta-ASP. We plan to extend DIAMOND to further semantics and therefore
chose the functional representation of acceptance conditions to forestall potential imple-



mentation issues. To reduce the instance size for computationally easier problems (like
bipolar ADFs or Dung AFs), we have implemented less complex operators such that
propositional formula representation and ASPARTIX format can be utilised in a native
manner. Here the modularity of our encodings is important and useful: Instead of encod-
ing different versions of semantics for ADFs, bipolar ADFs and AFs, we have one en-
coding of each semantics, and three different encodings of the operator ΓD [4] (general
ADFs, bipolar ADFs, AFs), which are combined by DIAMOND as needed.

3.2. Implementation Details

DIAMOND in version 1.0.0 is a Python program (needing Python 3.3 onwards) that
utilises clingo 4.3.0 to compute the interpretations of a given abstract dialectical frame-
work. In general most parts of the computation are done with answer set programming
encodings for clingo. The Python program analyses the given input format and the de-
sired results to decide which (if any) input format conversions shall be done before the
solving starts. In addition it manages the selection of the used encodings to provide an
easy way to query for interpretations.

All of the encodings are designed in a modular manner. The semantics for the differ-
ent types of abstract dialectical frameworks are defined over a specific operator. As this
operator is the only difference, DIAMOND defines those semantics such that the operators
can be substituted easily. The ≤i-optimisation for different semantics is handled via two
clingo calls, managed by Python to avoid the need of optimisation constructs in ASP. To
compute the link-types of bipolar ADFs, the already mentioned saturation technique has
been utilised, as the decision for one link is already coNP-hard. Due to the possibility
that a link can be attacking and supporting it is also required to use the union of all an-
swers of the link-type computation instead of one, which is also handled by the Python
program.

4. Experimental Evaluation

To analyse the runtime behaviour of DIAMOND, we performed a series of practical ex-
periments. Current work on comparing state-of-the art AF implementations create ran-
dom AFs for running experiments, see [2] for an example. Instead of creating random
instances of AFs for testing, we decided to encode an actual reasoning problem – the
factorisation of integers – into abstract argumentation. This allows to analyse not only
the behaviour of different implementations but also the influence on problem encoding
on this behaviour.

4.1. Experiment Design

The encoding is inspired by the work of Horie and Watanabe [12] in SAT solving, who
proposed this method to create hard, but satisfiable instances for the SAT problem in
propositional logic. Roughly, the approach works as follows: For a given natural number
n, we guess two distinct prime numbers p and q that both have exactly n significant bits
in binary representation. Then we compute the product z = p · q and create the problem
instance associated with z by encoding the formula (∃x, y)x · y = z into abstract argu-
mentation, where x, y (variables) and z (a number) are represented in binary. Clearly



this problem has exactly two solutions, {x 7→ p, y 7→ q} and {x 7→ q, y 7→ p}. To obtain
a problem encoding with exactly one solution, we add the constraint x < y.

The major advantage of such a problem-encoding approach is that we do not only
measure computation time of our implementation, but can also check its correctness: we
know the single intended solution to the problem and can therefore check whether (a) the
implementation does return a single interpretation, and (b) can inspect the interpretation
to make sure that the right p and q have been computed. Furthermore, the approach is
scalable, since the problem instance size basically depends on the number n of bits in p
and q.

The main technical issue is the encoding of the formula (∃x, y)x · y = z into AFs
and ADFs. In both cases, we can make use of basic standard knowledge in technical
computer science, and AFs’ and ADFs’ close relationship to classical propositional logic.
The relationship is clear for ADFs due to their Boolean acceptance functions. For AFs the
relationship is equally straightforward, but perhaps less well-known [8]. Roughly, AFs
can be seen as Boolean circuits where the only kind of gate is a NOR gate (computing
a negated logical disjunction). This stems from the fact that an argument is accepted (its
output is true) if and only if none of its attackers (inputs) is accepted (true). Making use of
this, it is then mostly straightforward to devise the circuit for (∃x, y)x · y = z ∧ x < y.
We illustrate the construction with the smallest possible example where n = 2, p = 2,
q = 3 and thus z = 6. For a number like z, we use zi to refer to its i-th bit in binary. For
example, asserting that z = 6 = 22+21 results in the formula ϕz=6 = ¬z0∧z1∧z2∧¬z3.
To encode x · y = z, we express all possible multiplications of two 2-bit numbers x and
y into a 4-bit number z. This is done by a sequence of additions z = x · 20 · y0 + x · 21 ·
y1 + x · 22 · y2. Multiplication by powers of two is easily realised by just shifting bits;
for a single one of such additions, we can thus use a sequence of one-bit full adders. A
one-bit full adder takes as input two bits a and b and an incoming carry bit ci, and yields
as output the sum s of the two bits and an outgoing carry bit co. The functions for the
two outputs are given by s ≡ (a⊕ b)⊕ ci and co ≡ (a ∧ b) ∨ (ci ∧ (a⊕ b)), where ⊕ is
exclusive-or.

This yields a set of propositional formulas whose models correspond to solutions of
the factorisation problem. As it turns out, most of the formulas are of the form s ≡ ϕ or
literals and thus perfectly amenable to be compiled into an ADF. To express the formulas
as an AF, additional internal NOR gates (arguments) are needed to emulate all other
kinds of gates. The number of additional gates is linear in the size of the original formula
set, but leads to considerable encoding sizes, where the ADF-based encoding is an order
of magnitude smaller than the AF-based encoding of the same problem instance.3

4.2. Experimental Results

We created random instances of the factorisation problem with varying numbers of bits,
n = 5, . . . , 20 with 50 instances for each n. We encoded each problem instance both as
AF (under stable extension semantics) and as ADF (under model semantics). We then
used DIAMOND to solve the problems and recorded the runtime. To have a compari-

3The size of an AF is the number of arguments plus the number of attacks; the size of an ADF is the sum of
sizes of all acceptance formulas, where the size of a formula is the number of atoms and connectives occurring
in it.



son baseline, we also used the ASPARTIX encoding of stable extension semantics4 and
the same version of clingo that underlies DIAMOND. The experiments were performed
on a desktop PC with Intel Core Duo Processor and 4GB RAM running ubuntu Linux
12.04. The timeout for each instance was set to 300 seconds. The results are discussed in
Figure 1 below.
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Figure 1. Solving the factorisation problem in three different ways: DIAMOND + ADF encoding, DIAMOND +
AF encoding, ASPARTIX + AF encoding. For small to medium problems of up to 13 bits, running DIAMOND on
the ADF encoding is clearly the best choice. From 14 bits on, running ASPARTIX on the AF encoding becomes
competitive. While the plot allows to compare the behaviour of DIAMOND on AFs with that of ASPARTIX on
AFs, we remind the reader that this comparison is not exactly fair since DIAMOND implements general ADFs
in contrast to ASPARTIX only treating AFs. However, we can observe that for one and the same implementa-
tion, DIAMOND, the ADF encoding clearly outperforms the AF encoding. In general, it can be seen that the
experiments went to the hardware limit of the machine we used. (Already for 15 bits, the number of arguments
plus attacks in the AF encoding is almost 50,000.)

5. Discussion

We have described the DIAMOND system, an implementation of abstract dialectical
frameworks. DIAMOND employs the ASP solver clingo to compute interpretations of
ADFs for various semantics. The system can read (subclasses of) ADFs in several input
formats, among them AFs in the ASPARTIX format. We analysed the computational per-
formance of DIAMOND using a novel approach to test instance generation: we encoded
the factorisation problem of natural numbers into AFs and ADFs and used DIAMOND to
factorise numbers of up to 40 bits in binary.

In the future, we plan to incorporate into DIAMOND the novel solving paradigm of
reactive answer set solving [10]. There, a solver is not called once on a specific instance,
but rather receives continuous input and produces continuous output. This will help us
deal with ADFs’ increased computational complexity in a clean way. Another goal of us
is to incorporate further, less abstract input languages into DIAMOND.

4The encoding was downloaded from http://www.dbai.tuwien.ac.at/research/project/
argumentation/systempage/Data/stable.dl.
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