
Decomposing Abstract Dialectical
Frameworks

Sarah Alice GAGGL
Technische Universität Dresden, Computational Logic Group, Germany

Hannes STRASS
Computer Science Institute, Leipzig University, Germany

Abstract We introduce a decomposition scheme for abstract dialectical frameworks
(ADFs). The decomposition proceeds along the ADF’s strongly connected compo-
nents. For several semantics, the decomposition-based version coincides with the
original semantics. For others, the scheme defines new semantics. These new se-
mantics allow us to deal with pertinent problems such as odd-length negative cycles
in a more general setting, that for instance also encompasses logic programs.

Keywords. abstract dialectical frameworks, decomposition, strongly connected
components, abstract argumentation

1. Introduction

The abstract dialectical framework (ADF) as introduced by Brewka and Woltran [3] is
a generalization of the well studied abstract argumentation framework (AF) [5]. ADFs
capture everything that is possible with AFs and allow for more general interactions
between arguments, e.g. support, joint attack, joint support and mixed combinations.

This generality is achieved by using acceptance conditions for the statements, i.e.
Boolean functions determining the acceptance of a statement s depending on the accep-
tance of its parents. These acceptance functions can also be represented as propositional
formulas ϕs, thus the status of a statement s can be obtained by the evaluation of the
propositional formula ϕs. For example, the AF-like relationship where statements a and
b individually attack c can then be expressed by ϕc = ¬a ∧ ¬b. That is, c is accepted
(true) if neither of its attackers is accepted (true). A set attack from a and b to c is written
as ϕc = ¬a ∨ ¬b where c is only rejected if both a and b are accepted. The same works
for support: ϕc = a ∧ b means that c needs support from both a and b, and ϕc = a ∨ b
says that c can be accepted if at least one of a or b is accepted. Most of the semantics
of ADFs are defined over the acceptance conditions, however additionally the links be-
tween the statements are explicitly represented in the same way as it is done in AFs. This
does not only have the advantage of the handy representation as a directed graph, it also
provides information about the structure of an ADF, like cycles and strongly connected
components (SCCs).

As usual the greater expressiveness of a formalism comes with a price. In our
case the computational complexity of semantics for ADFs is in general higher than for



AFs [9]. A successful way of dealing with big or complex problems is to split them into
smaller sub-problems where it is easier to find a solution. The overall solution then con-
sists of a combination of the solutions of all sub-problems. Here, we propose an approach
to decompose ADFs along their SCCs. While our approach is inspired by similar work
on AFs by Baroni et al. [1], there are important differences. First, the SCC-recursive
schema for AFs is based on a recursive decomposition of an AF along its SCCs, where
in each step the semantics are computed for sub-frameworks consisting of single SCCs.
The SCCs of an AF can change during the computation, depending on the outcome of
the semantics from the previous SCCs. In particular, arguments which are attacked from
outside their SCCs from an accepted argument are eliminated, which can change the
remaining SCCs of the framework. As ADFs allow complex acceptance conditions for
statements one needs a way to pass on the outcome of preceding components to all ac-
ceptance conditions of statements depending on them and additionally handle the change
of SCCs. Second, as acceptance conditions can be formulated as propositional formulas,
there might be redundancies in the representation. For instance, the formula ϕs = a ∨ t
always evaluates to true, hence a is redundant in ϕs and can be removed. However this
redundant information would also be given in the links of the ADF and may lead to
dependencies in the graph which are actually not present. Hence, a pure decomposition
along SCCs would not work correctly. Third, in the AF case, some semantics are defined
in a simplified version of the general SCC-recursive schema, namely for stable, cf2 and
stage2 the notion of defense is somehow weakened [6].

The main contributions of this work are the following. We propose a recursive pro-
cedure to compute semantics for ADFs along SCCs which allows to propagate already
obtained information on the acceptance state of statements to others which depend on
them. Within these propagation steps, redundant information is identified and eliminated.
It turns out that our approach is indeed a generalization of the SCC-recursive schema for
AFs, as it allows to compute all standard admissible-based semantics and the naive-based
ones within the same procedure. Hence, it can also be seen as an alternative characteriza-
tion of the general SCC-recursive schema like the one for cf2 and stage2 semantics pre-
sented in [7, 6]. Finally, we briefly consider the converse problem of composing ADFs.
Here, it turns out that there seems to be no single composition operator that works as
desired for all possible ADFs.

2. Background

We will make use of many standard concepts of classical propositional logic in this
paper, including the usual notions of formulas, interpretations and models, as well as
satisfiability and refutability. Our analysis in this paper will be based on three-valued
interpretations, mappings v : S → {t, f ,u} that assign one of the truth values true (t),
false (f ) or unknown (u) to each statement. A comparable treatment for AFs was given
by the three-valued argumentation stages of Verheij [10]. For uniformity among logic-
based and argumentation-based formalisms, in this paper we use standard notation and
terminology from mathematical logic.

The three truth values are partially ordered by ≤i according to their information
content: we have u <i t and u <i f and no other pair in <i, which intuitively means
that the classical truth values contain more information than the truth value unknown.



The information ordering ≤i extends in a straightforward way to valuations v1, v2 over
S in that v1 ≤i v2 iff v1(s) ≤i v2(s) for all s ∈ S. The ≤i least element of the set of
all valuations is the valuation mapping all statements to unknown – the least informative
interpretation. Obviously, a three-valued interpretation v is two-valued if all statements
are mapped to either true or false. Such two-valued interpretations are ≤i-maximal.

A particular non-standard notion we use is that of the partial evaluation of a formula.
Given a three-valued interpretation v and a formula ϕ, the partial evaluation of ϕ with v
takes the two-valued part of v and replaces the evaluated variables by their truth values.

Definition 1. Let ϕ be a propositional formula over vocabulary S and for an M ⊆ S let
v :M → {t, f ,u} be a three-valued interpretation. The partial valuation of ϕ by v is
ϕv = ϕ[p/t : v(p) = t][p/f : v(p) = f ].

For example, consider the propositional formula ϕ = a ∨ (b ∧ c) and the interpretation
v1 = {a 7→ f , b 7→ t, c 7→ u}. Statement c with v1(c) = u will remain in ϕs, while
a and b are replaced, and we get ϕv1 = f ∨ (t ∧ c). This formula is equivalent to
c and thus both satisfiable (by {c 7→ t}) and refutable (by {c 7→ f}). In contrast, for
v2 = {a 7→ t, b 7→ u, c 7→ u} the formula ϕv2 = t ∨ (b ∧ c) is irrefutable; for v3 =
{a 7→ f , b 7→ f , c 7→ u} the formula ϕv3 = f ∨ (f ∧ c) is unsatisfiable.

2.1. Abstract Argumentation Frameworks

In this section we introduce the basics of abstract argumentation and the semantics we
need for further investigations. We first give the formal definition of abstract argumenta-
tion frameworks as introduced by Dung [5].

Definition 2. An argumentation framework (AF ) is a pair F = (A,R), where A is a
finite set of arguments and R ⊆ A× A is the attack relation. The pair (a, b) ∈ R means
that a attacks b. A set S ⊆ A of arguments attacks b (in F ), if there is an a ∈ S such that
(a, b) ∈ R.

The conflicts between the arguments are solved on a semantical level. An argument can
either be accepted, rejected or it is undecided whether to accept or reject the argument.
Here we will use the notion of labelings, as they directly correspond to three-valued in-
terpretations of ADFs. For an overview about labelings for most argumentation seman-
tics we refer to [2]. Thus, accepted arguments are labeled with t (true), rejected ones
with f (false) and undecided ones with u.

For an AF F = (A,R), a labeling is a total function v : A → {t, f ,u}. Then, a
labeling can be denoted as a triple v = (vt, vf , vu), where vl = {a ∈ A | v(a) = l}.
Following [2] conflict-free and naive labelings are given as follows. v is a conflict-free
labeling of F , i.e. v ∈ cfi(F ), iff (i) for all a ∈ vt there is no b ∈ vt such that (a, b) ∈ R,
(ii) for all a ∈ vf there exists a b ∈ vt such that (b, a) ∈ R. Then, v is a naive labeling
of F , i.e. v ∈ nai(F ), iff v ∈ cfi(F ) and there is no v′ ∈ cfi(F ) with either vt ⊂ v′t or
vf ⊂ v′f .

The cf2 semantics is based on a decomposition along the SCCs of an AF. Hence,
we require some further formal machinery. By SCCs(F ), we denote the set of strongly
connected components of an AF F = (A,R), i.e. sets of vertices of the maximal strongly



connected1 sub-graphs of F ; Moreover, for an a ∈ A, we denote by CF (a) the com-
ponent of F where a occurs in, i.e. the (unique) set C ∈ SCCs(F ), such that a ∈ C.
It turns out to be convenient to use two different concepts to obtain sub-frameworks of
AFs. Let F = (A,R) be an AF and S ⊆ A. Then, F |S = ((A ∩ S), R ∩ (S × S))
is the sub-framework of F w.r.t. S, and we also use F − S = F |A\S . We note the
following relation (which we use implicitly later on), for an AF F and sets S, S′:
F |S\S′ = F |S − S′ = (F − S′)|S . We now give the definition of the cf2 semantics in
form of labelings [2].

Definition 3. Let F = (A,R) be an AF and v be a labeling of F . A b ∈ A is component-
defeated by vt (in F ), if ∃a ∈ vt, s.t. (a, b) ∈ R and a /∈ CF (b). The set of arguments
component-defeated by v in F is denoted by DF (vt).

Then, v is a cf2 labeling of F , i.e. v ∈ cf2 (F ), iff

• v ∈ nai(F ), in case |SCCs(F ) = 1|;
• otherwise, ∀C ∈ SCCs(F ), v|C\DF (vt) ∈ cf2 (F |C −DF (vt)), DF (vt) ⊆ vf .

Further AF semantics exist; to save space we define them implicitly via ADFs.

2.2. Abstract Dialectical Frameworks

An abstract dialectical framework (ADF) is a directed graph whose nodes represent state-
ments or positions which can be accepted or not. The links represent dependencies: the
status of a node s only depends on the status of its parents par(s), that is, the nodes
with a direct link to s. Each node s has an associated acceptance condition Cs specifying
the exact conditions under which s is accepted. Cs is a function assigning to each sub-
set of par(s) one of the truth values t, f . Intuitively, if for some R ⊆ par(s) we have
Cs(R) = t, then s will be accepted provided the nodes in R are accepted and those in
par(s) \R are not accepted.

Definition 4. An abstract dialectical framework is a tuple D = (S,L,C) where

• S is a set of statements (positions, nodes),
• L ⊆ S × S is a set of links,
• C = {Cs}s∈S is a collection of total functions Cs : 2par(s) → {t, f}, one for

each statement s. The function Cs is called acceptance condition of s.

It is often convenient to represent acceptance conditions as propositional formulas; we
will do so in this paper. There, each Cs is represented by a propositional formula ϕs
over par(s). Then, clearly, for M ⊆ par(s) we have Cs(M) = t iff M |= ϕs. In this
way, AFs are recast as ADFs thus: For an AF F = (A,R), the ADF associated to F is
DF = (A,R,C) with C = {ϕa}a∈A and ϕa =

∧
(b,a)∈R ¬b for a ∈ A. Intuitively, an

AF argument is accepted if and only if none of its attackers is accepted.
It may be the case that a link (r, s) ∈ L in an ADF bears no actual significance.

Formally, r is redundant in ϕs if and only if there is no two-valued interpretation v :

par(s) \ {r} → {t, f} such that v(ϕ{r 7→t}
s ) 6= v(ϕ

{r 7→f}
s ). That is, if (r, s) is redundant

then r has no influence on the truth value of ϕs whatsoever.

1A directed graph is called strongly connected if there is a directed path from each vertex in the graph to
every other vertex of the graph.



Several semantics can be defined by using three-valued interpretations v to partially
evaluate acceptance formulas ϕs. While this style of definition is novel, the resulting
semantics have mostly appeared in the literature before [4]. Some others are new, but
straightforward to define [8]; these are the (three-valued) conflict-free, naive and stage
semantics.

Definition 5. Let D = (S,L,C) be an ADF. A three-valued interpretation v is

• admissible iff for each s ∈ S we have:

∗ v(s) = t implies that ϕvs is irrefutable,
∗ v(s) = f implies that ϕvs is unsatisfiable;

• preferred iff it is ≤i-maximal with respect to being admissible;
• complete iff for each s ∈ S we have:

∗ v(s) = t if and only if ϕvs is irrefutable,
∗ v(s) = f if and only if ϕvs is unsatisfiable;

• grounded iff v is the ≤i-least complete interpretation;
• conflict-free iff for all s ∈ S we have:

∗ v(s) = t implies that ϕvs is satisfiable,
∗ v(s) = f implies that ϕvs is unsatisfiable;

• naive iff it is ≤i-maximal with respect to being conflict-free;
• stage iff the set vu is ⊆-minimal with respect to being conflict-free.

A two-valued interpretation v is a model of D iff for all s ∈ S we find v(s) = v(ϕs).

Intuitively, an interpretation v is admissible if it can justify the definite stances it
takes: for example, whenever v judges a statement s to be true, then this must be justified
by the statement’s acceptance formula. This justification can take into consideration the
definite assignments of v, but must be valid no matter how the undecided statements of
v are interpreted. This is elegantly achieved by checking the refutability of the partial
evaluation ϕvs of the acceptance formula of s. Complete interpretations are then the ones
whose recommendations are exactly in accordance with the refutability/satisfiability sta-
tus of v’s assignments. The grounded semantics can consequently be seen as the great-
est possible consensus between all acceptable ways of interpreting the ADF at hand.
The three-valued notion of conflict-freeness is clearly a weaker version of admissibility,
where truth of a statement has to be justified not by irrefutability, but only by satisfi-
ability. (The justification standard for rejected statements is the same.) As usual, naive
and stage are then those conflict-free interpretations which are information-maximal or
undecided-minimal, respectively. A model of an ADF is simply a two-valued complete
interpretation. All of these semantics are proper generalizations of the same semantics
for AFs [4, 8].

Example 1. Let D = (S,L,C) be an ADF with S = {a, b, c}, L = {(a, b), (b, c),
(c, a)} and the acceptance conditions ϕa = ¬c, ϕb = ¬a and ϕc = ¬b. (Note that this is
an AF-based ADF with an attack cycle of length three.) Some conflict-free interpretations
of D are v1 = {a 7→ u, b 7→ u, c 7→ u}, v2 = {a 7→ u, b 7→ t, c 7→ f}, v2 = {a 7→
t, b 7→ f , c 7→ u}, and v4 = {a 7→ f , b 7→ u, c 7→ t}. (There are six further conflict-free
interpretations.) We have a closer look at interpretation v4.



• As v4(a) = f , according to the definition of conflict-free interpretations, ϕv4a
needs to be unsatisfiable. Thus we construct the partial valuation of ϕa = ¬c by
v4 and obtain ϕv4a = ¬t, which indeed is unsatisfiable.

• As v4(c) = t, the formula ϕv4c = ¬b needs to be satisfiable, which holds.

On the other hand, consider v5 = {a 7→ t, b 7→ u, c 7→ f}, which is not conflict-free, as
v5(c) = f but ϕv5c = ¬b is satisfiable. The naive interpretations of D are v2, v3 and v4
because they are ≤i-maximal with respect to being conflict-free.

3. Decomposing ADFs

The decomposition along the SCCs of an ADF D can not be performed in the same way
as it is done for AFs. If one looks at a setM ⊆ S of statements, the acceptance conditions
of the statements in M might still depend on statements which are not contained in M ,
even if M forms an SCC. To be able to decompose and evaluate an ADF, it is necessary
to modify the acceptance conditions of the statements, in a way that they only depend on
statements also contained in the same component. This modification will be performed
depending on the decided truth values of the parents of statements.

We propose a procedure which propagates truth values from independent parts of an
ADF to the rest of the ADF. We need to take several facts into account. First, we might
choose to use three-valued interpretations (labellings) to represent the current acceptance
status of statements. As the acceptance conditions of ADFs are defined as two-valued
functions, we can not pass on the truth value u, but we make a statement s forcibly
undecided by changing its acceptance formula to ¬s. Second, by fixing the truth value of
some statements, we might produce redundancies in the acceptance conditions of other
statements. Eliminating these redundancies from the links and the acceptance formulas
is one of the crucial points in the procedure, because by doing so, the dependencies of
the statements can change, which has an important influence on the subsequent calls.

Definition 6. Let D = (S,L,C) be an ADF and p, s ∈ S. We say that s depends on p if
there is a path from p to s in L but no path from s to p in L. Now letM ⊆ S. A statement
s ∈ S is independent modulo M iff for each p ∈ S, if s depends on p then p ∈M . A set
M ⊆ S is independent iff there is no s ∈M that depends on a p ∈ S \M . Lastly, define
indD(M) = {s ∈ S | s is independent modulo M in D}.

Note that dependence here implicitly speaks about strongly connected components
(SCCs). Intuitively speaking, statements do not depend on statements in their own SCC,
but on all statements in previous SCCs. The function indD returns the set of all state-
ments which are independent modulo the input set. This function is⊆-monotone, that is,
for M ⊆ N ⊆ S, we find indD(M) ⊆ indD(N). Note furthermore that independence
is not concerned with acceptance conditions at all, but purely relies on the topology of
the ADF.

Example 2. Consider an ADF D with the statements and links given graphically:

a b c d e



We initially have indD(∅) = {a, b} = M0. Then indD(M0) = {a, b, c, d} = M1 and
finally indD(M1) = {a, b, c, d, e}.

Given an independent subset M of statements of an ADF, ignoring all other statements
again yields an ADF.

Definition 7. Let D = (S,L,C) be an ADF and M ⊆ S be an independent set. The
ADF D restricted to M is given by D|M = (M,L ∩ (M ×M), {ϕs}s∈M ).

Note that D|M really is an ADF since its acceptance formulas by presumption do not
mention statements not in M .

We next define how to reduce an ADF given a subset M of its statements and an
interpretation of this subset. The intuition is that the truth values of statements in M
are fixed and can be propagated into the rest of the ADF. For this definition recall from
Definition 1 that for a propositional formula ϕ and a three-valued interpretation v of
parts of its signature, ϕv denotes the formula ϕ where atoms that v maps into {t, f} have
been replaced by their truth values. Through such replacements it may happen that links
become redundant. For example, consider the acceptance formula ϕs = a ∨ (b ∧ c) and
the interpretation v = {a 7→ u, b 7→ f , c 7→ u}. The reduced formula is ϕvs = a∨(f ∧c).
This formula is equivalent to a and thus c is redundant in ϕvs . The identification and
removal of such redundant parents is an important ingredient of the following definition.

Definition 8. Let D = (S,L,C) be an ADF, M ⊆ S and v : M → {t, f ,u}. The ADF
D reduced with v on M is given by JDKvM = (S, JLKvM , {JϕsKvM}s∈S) with

JϕsK
v
M =


t if s ∈M and v(s) = t

f if s ∈M and v(s) = f

¬s if s ∈M and v(s) = u

ϕvs [r/t : r is redundant in ϕvs ] otherwise

JLKvM = (L \ {(r, s) ∈ L | r is redundant in JϕsK
v
M}) ∪ {(s, s) | v(s) = u} .

That is, JLKvM is L without redundant links. The new acceptance formulas in ADF
JDKvM fix the truth values of statements in M as v assigns them. Furthermore, the clas-
sical ones among these truth values are fixed in acceptance formulas that mention state-
ments in M . Should such replacements make other statements redundant, then these are
replaced by a fixed truth value to make the redundancy explicit. In the example above,
the partially evaluated formula a ∨ (f ∧ c) is further transformed into a ∨ (f ∧ t), that
is, former parent c is replaced by t. (Since the parent is redundant, it is immaterial which
truth value is actually used.) Whenever par(s) ∩M = ∅, that is, the parents of s are not
affected by v, then JϕsK

v
M = ϕs, that is, the acceptance formula of s does not change.

Now we present the final ingredient of our decomposition-based scheme, the most
important definition of the paper. It describes the actual recursion that is used to assign
to a given ADF semantics σ a new semantics σ2.

Definition 9. Let D = (S,L,C) be an ADF and σ a semantics. Define a set of interpre-
tations as follows: σ2(D) = σ2(indD(∅), D), where



σ2(M,D) =


σ(D) if M = S⋃
w∈σ(D|M)

σ2
(
ind JDKwM (M), JDKwM

)
otherwise.

The basic underlying intuition of this definition is to recursively decompose a given
ADF along its independent statements. We start out with all statements which are in-
dependent modulo the empty set, M0 = indD(∅). We now look only at the sub-ADF
D|M0

that consists of D restricted to M0 and consider all its σ-interpretations. For each
σ-interpretation w, we use the information it contains (that is, the truth values it assigns)
to simplify the rest of the ADF. Simplification means that we propagate the truth val-
ues of the interpretation as far as possible and at the same time remove redundant links.
We then recursively invoke the definition on the ADF resulting from simplifying D by
w. Note that at this point, the statements in M0 are already dealt with, they have fixed
truth values. The main task of the recursive call is to take care of all statements that have
newly become independent (modulo M0). Since the operator indD is ⊆-monotone, the
sequence indD(∅) ⊆ indD(indD(∅)) ⊆ . . . is monotonically increasing and eventually
reaches the fixed-point indD(S) = S. Then the first case of the definition applies and the
recursion stops. An obvious special case are ADFs D with only one strongly connected
component. In this case, indD(∅) = S and thus σ2(D) = σ(D).

Example 3. Let the ADF D = (S,L,C) be graphically given as follows:

a

¬c
b

¬a
c

¬b
d

c ∨ f

e

d ∧ f
f

e

We want to compute nai2(D) = nai2(indD(∅), D) and thus construct the set indD(∅) =
{a, b, c} =M0. Then we obtain nai(D|M0

) = {v0, v1, v2}:

v0 = {a 7→ u, b 7→ t, c 7→ f}, v1 = {a 7→ f , b 7→ u, c 7→ t}, v2 = {a 7→ t, b 7→ f , c 7→ u}.

According to Definition 9, for each of these interpretations w we construct the respec-
tive reduced ADF JDKwM0

and recursively determine its nai2 semantics. We begin with
w = v0 ∈ nai(D|M0

) and compute nai2(M1, D1) with D1 = JDKv0M0
. The ADF D1 is

graphically depicted below; links that have newly become redundant are dotted, links
originating in independent statements are thin.

a

¬a
b

t

c

f

d

f ∨ f

e

d ∧ f
f

e

Thus M1 = indD1(M0) = S, and we only need to consider nai(D1) = {v3, v4}:

v3 = v0 ∪ {d 7→ t, e 7→ t, f 7→ t}, v4 = v0 ∪ {d 7→ f , e 7→ f , f 7→ f}.

We next consider v1 ∈ nai(D|M0
) and call nai2(M2, D2) with D2 = JDKv1M0

:



a

f

b

¬b

c

t

d

t ∨ t

e

d ∧ f
f

e

Note that ϕv1d = t ∨ f where f is redundant and thus JϕdK
v1
M0

= t ∨ t. For the next step
we get M2 = indD2(M0) = {a, b, c, d}, and D2|M2

has the single naive interpretation
v5 = v1 ∪ {d 7→ t}. We compute nai2(M3, D3) with D3 = JD2K

v5
M2

:

a

f

b

¬b

c

t

d

t

e

t ∧ f
f

e

We obtain M3 = indD3(M2) = S and two naive interpretations for D3:

v6 = v5 ∪ {e 7→ t, f 7→ t}, v7 = v5 ∪ {e 7→ f , f 7→ f}.

Finally, for v2 ∈ nai(D|M0
) the call nai2(M4, D4) is performed with D4 = JDKv2M0

:

a

t

b

f

c

¬c
d

c ∨ f

e

d ∧ f
f

e

Thus M4 = indD4
(M0) = S and the two naive interpretations of D4 are

v8 = v2 ∪ {d 7→ t, e 7→ t, f 7→ t}, v9 = v2 ∪ {d 7→ t, e 7→ f , f 7→ f}.

Thus overall, we obtain the set

nai2(D) = nai2(M1, D1) ∪ nai2(M2, D2) ∪ nai2(M4, D4) = {v3, v4, v6, v7, v8, v9}.

In contrast, the naive interpretations of D contain another interpretation v10 with

v10 = {d 7→ t, a 7→ t, e 7→ f , f 7→ f , b 7→ u, c 7→ u} ∈ nai(D) = nai2(D) ∪ {v10} .

So at least for the case of naive semantics, nai 6= nai2. But what about other se-
mantics? The following fundamental result clarifies this question. For semantics σ, τ , the
expression σ ≤ τ means that for all ADFs D we have σ(D) ⊆ τ(D). Due to a lack
of space, we cannot present the (long and tedious) proof of our main result. We note
however that the counterexamples which are needed to prove items 2 and 4 are AF-based
ADFs which can be found in [6].

Theorem 1.

1. Let σ ∈ {cfi , adm, pre, com,mod}. Then σ ≤ σ2.
2. Let σ ∈ {nai , stg}. Then σ 6≤ σ2.
3. Let σ ∈ {cfi ,nai , adm, pre, com,mod}. Then σ2 ≤ σ.
4. Let σ ∈ {stg}. Then σ2 6≤ σ.



As an easy consequence, we get a number of semantics for which the decomposition-
based scheme does not lead to new semantics, but rather new ways to compute the se-
mantics. For the grounded semantics, the equality grd = grd2 follows from the same
equality for complete semantics.

Corollary 2. For σ ∈ {cfi , adm, pre, com, grd ,mod} we find σ = σ2.

As another result, we can show that for the special case of AFs, our nai2 semantics
coincides with AFs’ cf2 semantics.

Proposition 3. Let F be an argumentation framework and DF its associated ADF. The
cf2 labelings of F coincide with the nai2 interpretations of DF .

4. Composing ADFs

While we have looked at decomposing ADFs into their strongly connected components
up to here, we now ask the converse question: Is it possible to compose two ADFs into a
single one such that the semantics of the composed ADF is readily computable from the
semantics of the two constituents?

We will look at two special classes of ADFs first, ADFs based on AFs, and ADFs
based on normal logic programs. While it is very natural to compose two AFs and equally
natural to compose two LPs, we will show that the two composition methods do not align
on the ADF level, which explains the need for two different ADF composition functions.

Composing AF-based ADFs. Recall that Brewka and Woltran [3] showed that ADFs
capture AFs: For an AF F = (A,R), the ADF associated to F is DF = (A,R,C) with
C = {ϕa}a∈A and ϕa =

∧
(b,a)∈R ¬b for a ∈ A. For two AFs F1 = (A1, R1) and

F2 = (A2, R2), it is natural to define their union as F1 ∪ F2 = (A1 ∪A2, R1 ∪R2). Let
us look how this translates to AF-based ADFs.

Example 4. Let F1 = (A1, R1) with A1 = {a, b} and R1 = {(a, b)}; F2 = (A2, R2)
with A2 = {b, c} and R2 = {(c, b)}. Clearly F = F1 ∪ F2 = ({a, b, c} , {(a, b), (c, b)}.
Now let us look at their ADF translations (or rather their acceptance formulas, where ϕ1

represent the formulas for DF1
, likewise ϕ2 for DF2

and the ϕ represent those for DF ).
Argument a is unattacked in F1 whence ϕ1

a = t, AF F2 does not even mention a, thus
in the ADF DF corresponding to the composed AF F we have ϕa = t. For argument b,
we get ϕ1

b = ¬a, ϕ2
b = ¬c and ϕb = ¬a ∧ ¬c. Argument c is not mentioned in F1 and

unattacked in F2 whence ϕc = t. So in general it seems that to compose two AF-based
ADFs with partly overlapping signatures, we have to interpret non-existent arguments as
always true, and join acceptance conditions conjunctively.

Composing LP-based ADFs. Brewka and Woltran [3] also showed how to translate
logic programs to ADFs: For P a normal logic program over a set A of atoms, define an
ADF DP = (A,L,C) as follows:

• L = {(b, a) | a←M ∈ P, b ∈M+ ∪M−}
• For a ∈ A, set ϕa =

∨
a←M∈P

(∧
m∈M+ m ∧

∧
m∈M− ¬m

)
.

Since a logic program is just a set of rules, for two LPs P1 and P2, it is natural to define
their union as P1 ∪ P2.



Example 5. Let P1 = {b← a} and P2 = {b← c} be logic programs. Clearly their
union is P = P1 ∪ P2 = {b← a, b← c}. The acceptance formulas of the respective
ADFs are these: For statement a, we have ϕ1

a = f since there is no rule for a in P1. P2

does not use a, thus in DP we have ϕa = f . Statement b is true if a is true according to
P1 and true if c is true according to P2, thus ϕb = a ∨ c. Finally, for statement c we get
ϕc = f as for a. So in general it seems that to compose two LP-based ADFs with partly
overlapping signatures, we have to interpret non-existent arguments as always false, and
join acceptance conditions disjunctively.

Composing general ADFs. The observed duality between composing AF-based ADFs
and LP-based ADFs motivates the following definition.

Definition 10. Let D1 = (S1, L1, C1) and D2 = (S2, L2, C2) be ADFs. Define

S = S1 ∪ S2, L = L1 ∪ L2, D1 ⊗D2 = (S,L,C⊗), D1 ⊕D2 = (S,L,C⊕)

C⊗ = {C1 ⊗s C2}s∈S where C1 ⊗s C2 =


ϕ1
s ∧ ϕ2

s if s ∈ S1 ∩ S2

ϕ1
s if s ∈ S1 \ S2

ϕ2
s otherwise

C⊕ = {C1 ⊕s C2}s∈S where C1 ⊕s C2 =


ϕ1
s ∨ ϕ2

s if s ∈ S1 ∩ S2

ϕ1
s if s ∈ S1 \ S2

ϕ2
s otherwise

Clearly if S1∩S2 = ∅ thenD1⊗D2 = D1⊕D2. With this definition, the following
is easy to prove.

Proposition 4. Let F1, F2 be argumentation frameworks and P1, P2 be normal logic
programs. Then (1) DF1∪F2

= DF1
⊗DF2

and (2) DP1∪P2
= DP1

⊕DP2
.

These results nicely illustrate the different granularity of AFs and LPs: From previ-
ous work, we know that – quite independently of specific semantics – AFs can be seen
as LPs of a special form [8]. (Roughly, the ADF associated to an AF is easily written
as a logic program, where for each argument there is one rule with all attackers as neg-
ative body literals.) In an AF-based LP, adding an argument to the AF results in adding
a rule to the LP. Adding an attack between existing arguments to the AF, on the other
hand, results in adding a negative body literal to an existing rule in the AF-based LP.
This modification of an existing rule cannot be easily expressed (i.e. via set union) at the
granularity level of LPs.

5. Discussion

We introduced and studied a scheme to decompose abstract dialectical frameworks along
their strongly connected components. For several semantics, our scheme leads to a new
way to compute interpretations, among them admissible, complete, preferred, grounded
and model semantics. For others, our scheme leads to new semantics which arguably
remedy some of the original semantics’ shortcomings, such as naive and stage semantics.



Due to the generality of ADFs, this paper – as a byproduct – defines the nai2 and
stg2 semantics also for logic programs. That is, when a normal logic program fails to
have models due to odd-length negative cycles, our decomposition-based scheme can
straightforwardly be applied to the logic program’s associated ADF to compute nai2 and
stg2 interpretations. Computationally, this is quite economic since the increase in size
from logic program to ADF is at most linear.

For future work, we plan to consider further semantics. For example, in this paper
we have not considered the ADF stable model semantics for clarity, as it also uses notions
of reduct and partial evaluation that are subtly different from the ones employed in this
paper. Naturally, besides analyzing the complexity of our decomposition-based scheme,
we also want to implement it to verify whether there is a performance gain in comparison
to conventional evaluation methods. Furthermore, this work has laid the groundwork for
considering (arbitrary) splittings of ADFs, thus also paving the way for studying their
strong equivalence.

Acknowledgements. This research has been partially supported by DFG under project
BR-1817/7-1.

References

[1] P. Baroni, M. Giacomin, and G. Guida. SCC-recursiveness: A general schema for
argumentation semantics. Artificial Intelligence, 168(1–2):162–210, 2005.

[2] P. Baroni, M. Caminada, and M. Giacomin. An introduction to argumentation se-
mantics. Knowledge Eng. Review, 26(4):365–410, 2011.

[3] G. Brewka and S. Woltran. Abstract Dialectical Frameworks. In Proc. KR 2010,
pages 102–111, 2010.

[4] G. Brewka, S. Ellmauthaler, H. Strass, J. P. Wallner, and S. Woltran. Abstract Di-
alectical Frameworks Revisited. In Proc. IJCAI 2013, pages 803–809. AAAI Press,
August 2013.

[5] P. M. Dung. On the Acceptability of Arguments and its Fundamental Role in Non-
monotonic Reasoning, Logic Programming and n-Person Games. Artificial Intelli-
gence, 77(2):321–358, 1995.

[6] W. Dvořák and S. A. Gaggl. Stage semantics and the SCC-recursive schema for
argumentation semantics. Journal of Logic and Computation, 2014.

[7] S. A. Gaggl and S. Woltran. The cf2 argumentation semantics revisited. Journal of
Logic and Computation, 23(5):925–949, 2013.

[8] H. Strass. Approximating operators and semantics for abstract dialectical frame-
works. Artificial Intelligence, 205:39–70, December 2013.

[9] H. Strass and J. P. Wallner. Analyzing the Computational Complexity of Abstract
Dialectical Frameworks via Approximation Fixpoint Theory. In Proc. KR 2014,
pages 101–110, Vienna, Austria, July 2014.

[10] B. Verheij. Two approaches to dialectical argumentation: admissible sets and argu-
mentation stages. In J.-J. Ch. Meyer and L.C. van der Gaag, editors, Proc. NAIC
1996, pages 357–368, 1996.


