
A principled approach to the
implementation of argumentation models

Bas VAN GIJZEL 1 and Henrik NILSSON
University of Nottingham

Abstract. Argumentation theory combines philosophical concepts and computa-
tional models to deliver a practical approach to reasoning that handles uncertain
information and possibly conflicting viewpoints. This paper focuses on the struc-
tured approach to argumentation that incorporates domain specific knowledge and
argumentation schemes. There is a lack of implementations and implementation
methods for most structured models. This paper shows how taking a principled ap-
proach, using the programming language Haskell, helps addressing this problem.
We construct a framework for developing structured argumentation models and
translations between models (given intertranslatability of models). We furthermore
provide a methodology to quickly test and formally prove desirable properties of
such implementations using a theorem prover. We demonstrate our approach on the
Carneades argumentation model and Dung’s abstract argumentation frameworks,
implementing both the models and a translation from Carneades into AFs. We then
provide implementations of correspondence properties and an initial formalisation
of Dung’s AFs into a theorem prover. The final result is a verified pipeline from the
structured model Carneades into existing efficient SAT-based implementations of
Dung’s AFs.

1. Introduction

Dung’s argumentation frameworks [6] have an established relationship to logic program-
ming. It is therefore not surprising that Dung’s AFs have seen significant developments
in the area of efficient implementation and elegant implementation methods, particularly
through implementations written in logic programming and answer set programming [7]
or through implementations based on SAT-solvers [3,7]. Several other abstract models,
are either direct extensions of Dung’s AFs or are closely related. These models can thus
also be implemented with relative ease through encoding into answer set programming
clauses [4], translation through other mathematical formalisms [1], or by direct imple-
mentation into a logic programming language such as Prolog.

Specifications of structured models of argumentation are more varied, due to their
possible phrasing in a specific domain, or a specific logic. This has caused implemen-
tation methodology of most structured models to lag behind. Notable exceptions are
the implementation of Carneades2 and assumption-based argumentation [8], the latter
which, due to its strong connections with Dung’s AFs and therefore logic programming,

1Corresponding author: Bas van Gijzel, bmv@cs.nott.ac.uk.
2See https://carneades.github.com.

https://carneades.github.com


has multiple mature implementations [8,14]. However, several other models have only
been implemented partially, if at all, and any implementations are typically expressed
in a programming paradigm or language that is very different from the mathematical
specification. The situation is similar for translations from structured models into other
abstract/structured models.

The difference in mathematical structure between structured models means that a
significant effort is required to establish formal relationships between them. This is also
true for the relationships between structured and abstract models [13,11,2]. Implement-
ing the resulting translations consequently becomes difficult, and verifying their correct-
ness is even harder.

We attempt to address the problem of implementing structured models and their
translations by providing a framework that allows implementation close to the mathe-
matical specification and facilitates checking and formal proof of properties, the latter
being key to verification of correctness. Our choice of programming language is Haskell.
This is motivated by our previous work [9,10], where we implemented the Carneades
argumentation model in a way that is easily understandable to argumentation theorists
with no prior Haskell knowledge.

More specifically, the contributions of this paper are the following:

• We argue that Haskell enables us to intuitively capture existing abstract and struc-
tured argumentation models, providing implementations that practically serve as
a mathematical specification.

• We provide, to our knowledge, the first implementation of a translation from a
structured into an abstract argumentation model. In addition, we provide tech-
niques to check the correctness of implementations by showing how to implement
desirable properties, such as correspondence properties.

• We discuss and provide a formalisation of Dung’s AFs into a theorem prover,
obtaining the first fully machine-checkable formalisation of an argumentation
model.

• We combine all this, to provide a verified pipeline, starting from an input file
reading a Carneades argument structure, resulting in a file containing a Dung AF,
readable by one of the fastest current implementations [7].

• All work is open source, publicly available and immediately installable3.

The paper is structured as follows. Section 2 introduces Haskell as a suitable imple-
mentation language for both structured and abstract models. Section 3 discusses a direct
algorithmic translation from Carneades into Dung and shows how Haskell can also be
used to implement translation in a satisfactory manner. In Section 4 we consider quick
testing and complete formalisation of argumentation models and correctness properties.
We conclude in Section 5, tying all strands of work together into one verified pipeline,
and discuss future work.

3The implementations and formalisations are fully documented and can be found online together with a
collection of additional examples: http://www.cs.nott.ac.uk/˜bmv/COMMA/.

http://www.cs.nott.ac.uk/~bmv/COMMA/


2. Haskell as an implementation language for structured and abstract models

Dung’s AFs and most other abstract approaches to argumentation are closely aligned
with logic and/or answer set programming. Consequently, implementing an argumenta-
tion model in Haskell amounts to little more than transliteration, meaning the implemen-
tation of an argumentation model can serve as a specification in its own right. Further-
more, verification of correctness is facilitated, be it informally (by inspection) or formally
(through a theorem prover like Agda).

In contrast, structured argumentation not based on logic programming still lacks a
completely satisfying programming methodology. For example, VISPARTIX [4], based
on answer set programming, supports a knowledge base and argument construction, but
it is not yet clear if more complicated external data types such as audiences or proof
standards can be handled. In the following, we argue that Haskell is a suitable language
for abstract as well as structured models by implementing Dung’s abstract argumentation
frameworks and a structured argumentation model, Carneades.

2.1. Dung’s abstract argumentation frameworks

We give some of the standard definitions of Dung’s AFs [6]. For the full implementation
including the semi-stable labelling algorithm, we refer to the fully documented Haskell
package online4 .

Definition 2.1 (Abstract argumentation framework). An abstract argumentation frame-
work is a tuple 〈Args,Atk〉, where Args is a set of arguments and Atk ⊆ Args × Args
is a relation on Args representing attack.

The Haskell counterpart of this definition takes the form of an algebraic data type:

data DungAF arg = AF [arg ] [(arg , arg)]

This is a transliteration of the mathematical definition, with lists used in place of sets.
Note that the definition is parametrised on the type of argument, arg . Abstract arguments
can be represented by strings, but we can also represent propositions or complete proof
trees from a different (structured) model such as Carneades.

2.2. Carneades

Carneades is a structured argumentation model designed to capture standards and bur-
dens of proof [12]. In previous work [9], we fully implemented the version of Carneades
as given in [2] along with a small domain specific language. We review a few technical
definitions that are required for Section 3.

Definition 2.2 (Carneades’ arguments). Let L be a propositional language. An argument
is a tuple 〈P,E, c〉 where P ⊂ L are its premises, E ⊂ L with P ∩ E = ∅ are its
exceptions and c ∈ L is its conclusion. Elements of L are literals; i.e., either an atomic
proposition or a negated atomic proposition. An argument is said to be pro its conclusion
c (which may be negative) and con the negation of c.

4http://www.cs.nott.ac.uk/˜bmv/Dung/

http://www.cs.nott.ac.uk/~bmv/Dung/


A set of arguments determines how propositions depend on each other. Carneades
requires that there are no cycles among these dependencies. Following Brewka and Gor-
don [2], we use a dependency graph to determine acyclicity of a set of arguments.

Definition 2.3 (Acyclic set of arguments). A set of arguments is acyclic iff its corre-
sponding dependency graph is acyclic. The corresponding dependency graph has a node
for every literal and its contrary, appearing in the set of arguments. A node p has a link
to node q whenever p depends on q in the sense that there is an argument pro or con p
that has q or q in its set of premises or exceptions.

There are two concepts of evaluation in the Carneades model, applicability of argu-
ments, which arguments should be taken into account, and acceptability of propositions,
which conclusions can be reached under the relevant proof standards, given the beliefs of
a specific audience. The reader is referred to the original articles [12,2] and our previous
work [9] for details.

3. An algorithm and implementation for the translation of Carneades into Dung

Many of the structured approaches in argumentation can be translated into abstract mod-
els like Dung’s AFs [13,1,2]. In particular, it is known that Carneades can be translated
into ASPIC+ [11], which in turn can be translated into AFs [15]. However, such trans-
lations, especially for models that are further removed from Dung’s AFs, have rarely
been implemented. We have taken two steps towards remedying this situation. Firstly, we
give an algorithm for translating a structured model, Carneades, directly into an abstract
model, Dung’s AFs. Secondly, we have implemented this translation and discuss a part
of it in this section. Part of this section is based on previous work in [10].

3.1. A practical algorithm for the translation of Carneades into Dung

Evaluating a Carneades model yields two results: a set of applicable arguments and a set
of acceptable conclusions (Section 2.2). The target AF thus needs to include arguments
representing both. Our algorithm gradually builds up Dung arguments and an attack re-
lation, by gradually translating the applicability and acceptability part of each Carneades
argument.

Algorithm 3.1. Algorithm for translation from Carneades into Dung’s AFs

1. generatedAF = 〈{defeater} ∪ assumptions, ∅〉.
2. sortedArgs = Topological sort of arguments on its dependency graph.
3. while sortedArgs 6= ∅:

(a) Pick the first argument in sortedArgs . Remove all arguments from sortedArgs
that have the same conclusion, c, and put them in argSet .

(b) Translate applicability part of arguments in argSet , building on previous
generatedAF ; put generated arguments/attacks in tempAF .

(c) argSet = ∅.
(d) Repeat (a) through (c) for the arguments for opposite conclusion c.
(e) Translate the acceptability part of c and c based on arguments in tempAF .

Add the results and tempAF to generatedAF .



(f) tempAF = ∅.

Using this algorithm we can get a one-one mapping from the union of arguments
and conclusions to arguments in an AF, with the exception of one administrative node,
defeater , that easily can be filtered out.

3.2. Step by step translation of an example

Figure 1 defines three arguments (leaving out weights and proof standards). The set of
propositions {kill ,witness,witness2 , unreliable2} are assumed.

Referring back to Definition 2.3, we can see that every proposition, including its
negation, is present in the dependency graph for the set of three arguments defined above:
see Figure 2. For reasons of presentation, we have left out the negations: all links and
nodes are exactly the same for the contrary of each literal. The dependency graph makes
it clear that it is necessary to translate the propositions unreliable, unreliable2, witness
and witness2 before intent and its two arguments (one pro and one con) can be trans-
lated. Figure 3 shows the resulting translation (all proposition names, including defeater,
shortened to first letter).

3.3. Our implementation of the algorithm

To encode Carneades’ arguments and propositions into the translated argumentation
framework we could generate String labels from the arguments and propositions. How-
ever, we opt to instantiate the Dung AF by instead using a union of the Carneades’ argu-
ments and propositions as the framework argument.

type ConcreteArg = Either PropLiteral Argument
type ConcreteAF = DungAF ConcreteArg

Here, Either is a Haskell data type representing union of two data types.
For further details on the implementation, see our literate Haskell article [10] or the

fully documented and open source implementation online.

4. Verification of formal properties of implementations

This section discusses two approaches to verifying the correctness of an implementa-
tion. The first is property-based testing. Given implementations of key correctness prop-
erties, tools like QuickCheck [5] can usually quickly identify any problems by picking
simple counter-examples from thousands of randomly generated test cases. The second
approach takes this further by formally verifying the correctness of an implementation
by means of a theorem prover.

4.1. Quick testing of properties

For the translation discussed in Section 3, we can refer to existing definitions of the
correspondence of applicability of arguments and acceptability of propositions (1. of
Theorem 4.10 of [11]).



intent

murder

kill

a1

unreliable

intent

a2

witness unreliable2witness2

¬intent

a3

Figure 1. Three arguments in Carneades (circles denote exceptions)

IK

M

U2U W2W

Figure 2. The dependency graph corresponding to the three arguments.

D

¬W2¬W

U2

¬K a3¬I U ¬U2¬M

I KM ¬U a1 a2W2W U2

Figure 3. The corresponding Dung AF.

Theorem 4.1. Let C be a carneades argument evaluation structure, 〈arguments ,
audience , standard〉, LCAES the propositional language used and let the argumen-
tation framework corresponding to C be AF . Then the following holds: An argument
a ∈ arguments is applicable in C iff there is an argument contained in the complete
extension of AF with the corresponding conclusion arga in an AF.

We will now sketch the implementation of the first correspondence property in
Haskell. The function corApp takes a Carneades model and given that the translation
function is a correct implementation, the Haskell implementation of correspondence of
applicability should always return True .

corApp :: CAES → Bool



corApp caes@(CAES (argSet , , )) =
let transCAES = translate caes

appArgs = filter (‘applicable‘caes)
(getAllArgs argSet)

transArgs = stripRight (groundedExt transCAES )
in fromList appArgs ≡ fromList transArgs

Here transCAES is the Carneades model after translation. appArgs are the applicable
arguments in caes using the original definitions of applicability in the Carneades model.
We then evaluate transCAES according to the grounded labelling (this is fine since
the resulting AF is proven to be cycle-free [11]) and filter out the translated arguments
using stripRight (discarding arguments representing propositions). The final line checks
equality of the two (by making the lists into sets using fromList). A tool like QuickCheck
can then be used to generate lots of random CAESs, and should corApp return False
for any of them, a counter-example has been found. QuickCheck includes sophisticated
infrastructure for tailoring the test case generation to work well also for complicated
domains.

4.2. Complete formalisation in a theorem prover

While tools like QuickCheck can help finding problems automatically, firm correctness
guarantees can only be obtained through formal proofs. Given that we are working in
a pure, functional, strongly typed setting, theorem provers based on the Curry-Howard
correspondence offer a particularly attractive approach. The idea is that types correspond
to propositions and programs correspond to proofs: to prove a theorem is to implement
a program having the corresponding type. We demonstrate this approach by formalising
Dung’s argumentation frameworks, up to grounded labelling, into Agda. Agda’s syntax
is very close to that of Haskell, making the step from implementation to complete for-
malisation relatively small. Agda checks that all functions are terminating. Thus, because
we successfully implemented the grounded semantics in Agda, we immediately know
that our algorithm is terminating on all (finite) inputs. Further, as a labelling is part of
the output, we have actually proven that the grounded extension always exists, verifying
one of Dung’s original results [6].

5. Conclusions and future work

In this paper we have shown that functional programming, specifically Haskell, is very
suitable for the implementation of structured and abstract models of argumentation. We
gave one of the first algorithmic translations between a structured and an abstract model,
implemented this, and showed how to quickly test key properties. We then took this fur-
ther, taking our implementation of Dung’s AFs into a theorem prover, proving termi-
nation and one of Dung’s original results. Finally, we combine all this into a verified
pipeline, starting from a Carneades input file, running it through our implementation of
the translation, and outputting to a file that is readable by the existing efficient imple-
mentation ASPARTIX [7]. A demonstration can be found online5.

5See: www.cs.nott.ac.uk/˜bmv/CarneadesIntoDung/Demo/.

www.cs.nott.ac.uk/~bmv/CarneadesIntoDung/Demo/


Future work includes extending the work on the correctness of the pipeline to com-
plete, automatically verified proofs through a theorem prover. This would require for-
malising Carneades and the translation from Carneades into Dung, and then formalising
correspondence properties and rationality postulates.

References

[1] Gerhard Brewka, Paul E. Dunne, and Stefan Woltran. Relating the semantics of abstract dialectical
frameworks and standard AFs. In Proceedings of the 22nd International Joint Conference on Artificial
Intelligence (IJCAI-11), pages 780–785, 2011.

[2] Gerhard Brewka and Thomas F. Gordon. Carneades and abstract dialectical frameworks: A reconstruc-
tion. In Massimiliano Giacomin and Guillermo R. Simari, editors, Computational Models of Argument.
Proceedings of COMMA 2010, pages 3–12, Amsterdam etc, 2010. IOS Press 2010.

[3] Federico Cerutti, Paul Dunne, Massimiliano Giacomin, and Mauro Vallati. A SAT-based approach
for computing extensions in abstract argumentation. In 2nd International Workshop on Theory and
Applications of Formal Argumentation (TAFA-13). Springer, 2013.

[4] Günther Charwat, Johannes Peter Wallner, and Stefan Woltran. Utilizing ASP for generating and visu-
alizing argumentation frameworks. CoRR, abs/1301.1388, 2013.

[5] Koen Claessen and John Hughes. Quickcheck: a lightweight tool for random testing of haskell programs.
Acm sigplan notices, 46(4):53–64, 2011.

[6] Phan Minh Dung. On the acceptability of arguments and its fundamental role in nonmonotonic reason-
ing, logic programming and n-person games. Artificial Intelligence, 77(2):321–357, 1995.

[7] Wolfgang Dvořák, Matti Järvisalo, Johannes Peter Wallner, and Stefan Woltran. Complexity-sensitive
decision procedures for abstract argumentation. Artificial Intelligence, 206:53–78, 2014.

[8] Dorian Gaertner and Francesca Toni. Computing arguments and attacks in assumption-based argumen-
tation. IEEE Intelligent Systems, 22(6):24–33, November 2007.

[9] Bas van Gijzel and Henrik Nilsson. Haskell gets argumentative. In Proceedings of the Symposium on
Trends in Functional Programming (TFP 2012), LNCS 7829, pages 215–230, St Andrews, UK, 2013.
LNCS.

[10] Bas van Gijzel and Henrik Nilsson. Towards a framework for the implementation and verification of
translations between argumentation models. In Accepted for Post Proceedings of the 25th symposium
on Implementation and Application of Functional Languages (IFL 2013), 2014.

[11] Bas van Gijzel and Henry Prakken. Relating Carneades with abstract argumentation via the ASPIC+

framework for structured argumentation. Argument & Computation, 3(1):21–47, 2012.
[12] Thomas F. Gordon and Douglas Walton. Proof burdens and standards. In Guillermo Simari and Iyad

Rahwan, editors, Argumentation in Artificial Intelligence, pages 239–258. Springer US, 2009.
[13] Sanjay Modgil and Henry Prakken. A general account of argumentation with preferences. Artificial

Intelligence, 195:361–397, 2013.
[14] Victor Noël and Antonis Kakas. Gorgias-c: Extending argumentation with constraint solving. In Esra

Erdem, Fangzhen Lin, and Torsten Schaub, editors, Logic Programming and Nonmonotonic Reasoning,
volume 5753 of Lecture Notes in Computer Science, pages 535–541. Springer Berlin Heidelberg, 2009.

[15] Henry Prakken. An abstract framework for argumentation with structured arguments. Argument &
Computation, 1:93–124, 2010.


