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Abstract. One tradition in the logical study of argumentation is to allow for argu-
ments that combine strict and defeasible inference rules, and to derive the strict in-
ference rules from a logic at least as strong as classical logic. An unsolved problem
in this tradition is how the trivialising effect of the classical Ex Falso principle can
be avoided when two arguments that use defeasible rules have contradictory con-
clusions. The problem is especially hard since any solution should arguably pre-
serve current results on satisfaction of consistency and logical closure properties.
One approach to solve the problem is to replace classical logic as the source for
strict rules with a weaker, monotonic paraconsistent logic. This paper explores this
approach in the context of the ASPIC+ framework for structured argumentation,
by instantiating it with a paraconsistent consequence notion of Rescher & Manor
(1970). The results are positive: satisfaction of the closure and consistency postu-
late is proven.
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1. Introduction

One tradition in the logical study of argumentation is to allow for arguments that com-
bine strict and defeasible inference rules, and to derive the strict inference rules from a
logic at least as strong as classical logic. An unsolved problem in this tradition, origi-
nally identified by [1,2], is how the trivialising effect of the classical Ex Falso principle
can be avoided when two arguments that use defeasible rules have contradictory conclu-
sions. The problem is especially hard since any solution should arguably preserve current
results on satisfaction of the consistency and closure postulates of [3].

In a nutshell, the problem is as follows. Suppose two arguments have contradictory
conclusions. If the strict inference rules include the Ex Falso principle (that an incon-
sistent set implies any formula), then these two arguments can be combined into an ar-
gument for ¬ϕ for any formula. This combined argument can (depending on the cir-
cumstances) defeat any argument for ϕ. So when there are arguments for contradictory
conclusions, any other argument is potentially under threat, which is clearly undesir-
able. Pollock [1,2] thought that he had avoided this problem by allowing for multiple
labellings, but Caminada [4] showed Pollock’s solution does not fully avoid contami-



nation. The problem is a genuine one, since there arguably is a real need for argumen-
tation systems that allow for combinations of strict and defeasible inferences and that,
moreover, allow for the full reasoning power of a deductive logic. Although for many
cases less expressiveness may suffice, a full theory of the logic of argumentation cannot
exclude the general case.

Caminada, Carnielli and Dunne [5] formulated a new set of rationality postulates
in addition to those of Caminada and Amgoud [3], to characterise cases under which
the trivialisation problem is avoided (called the postulates of non-interference and crash-
resistance). The problem can then be reformulated as the problem of how to satisfy the
new postulates of Caminada, Carnielli and Dunne while preserving known results on
satisfying the postulates of Caminada and Amgoud.

To solve the problem, two approaches are possible. One is to change the definitions
of the argumentation system, while the other is to derive the strict inference rules from
a weaker logic than classical logic. The first approach is taken by Wu [6], who for the
ASPIC+ framework [7,8] requires that for each argument the set of conclusions of all
its subarguments are classically consistent. She shows that this solution works for a re-
stricted version of ASPIC+ without preferences, but gives counterexamples to the con-
sistency postulates for the case with preferences.

Another approach to solve the problem is to replace classical logic as the source for
strict rules with a weaker, monotonic paraconsistent logic, in order to invalidate the Ex
Falso principle as a valid strict inference rule. This paper explores the use of [9]’s para-
consistent consequence notion in the context of the ASPIC+ framework for structured
argumentation. The choice of ASPIC+ for these purposes is justified by its generality
and the fact that it captures various other approaches as special cases, such as ABA as
studied in [10], various forms of classical argumentation as studied in [11], and various
instantiations with Tarskian abstract logics as studied by [12]. Therefore, results in terms
of ASPIC+ are representative for a large class of argumentation systems.

For simplicity we take it for granted that with any paraconsistent logic, ASPIC+

satisfies the postulates of [5] because of the absence of the Ex Falso principle as a strict
inference rule. The focus is on the question whether with [9]’s consequence notion AS-
PIC+ still satisfies the consistency and closure postulates.

The rest of this paper is organised as follows. First the ASPIC+ framework is sum-
marised and the problem is illustrated in more detail. Then [9]’s paraconsistent conse-
quence notion is presented and embedded in an adapted version of ASPIC+. Then the
main contribution of this paper is given, in the form of proofs of satisfaction of the clo-
sure and consistency postulates (exploiting recent results of [13]).

2. The ASPIC+ Framework

In this section, [14]’s theory of abstract argumentation and its use by the ASPIC+ frame-
work are briefly reviewed.

An abstract argumentation framework (AF ) is a pair (A,D), where A is a set of
arguments andD ⊆ A×A is a binary relation of defeat. An argumentA defeats argument
B if (A,B) ∈ D. A set S of arguments defeats an argument B if there is an argument
A ∈ S such that A defeats B. A set S defeats a set S′ if there is an argument A ∈ S′
such that S defeats A. A set of arguments is said to be conflict-free if it does not attack



itself; otherwise it is conflicting. A set is admissible if it is conflict-free and defends
itself by attacking each argument attacking S. Extensions are admissible sets with some
additional properties. They can be defined according to the function F : 2A → 2A such
that F (S) = {A|A A is defended by S}. A complete extension is an admissible set that
contains each argument it defends; this is any conflict-free fixed point of F . A preferred
extension is a maximal conflict-free fixed point of F . A minimal conflict-free fixed point
corresponds to a grounded extension. A stable extension is conflict-free and attacks all
arguments not belonging it.

The ASPIC+ framework [7,8] gives structure to Dung’s arguments and defeat rela-
tion. It defines arguments as inference trees formed by applying strict or defeasible infer-
ence rules to premises formulated in some logical language. Informally, if an inference
rule’s antecedents are accepted, then if the rule is strict, its consequent must be accepted
no matter what, while if the rule is defeasible, its consequent must be accepted if there are
no good reasons not to accept it. Arguments can be attacked on their (ordinary) premises
and on their applications of defeasible inference rules. Some attacks succeed as defeats,
which is partly determined by preferences. Below the version of ASPIC+ defined in [8]
is presented, more precisely, the special case with symmetric negation.

ASPIC+ is not a system but a framework for specifying systems. It defines the no-
tion of an abstract argumentation system as a structure consisting of a logical language
L closed under negation, a set R consisting of two subsets Rs and Rd of strict and de-
feasible inference rules, and a naming convention n in L for defeasible rules in order to
talk about the applicability of defeasible rules in L. Thus informally, n(r) is a wff in L,
which says that rule r ∈ R is applicable.

Definition 1. [Argumentation systems] An argumentation system is a triple AS =
(L,R, n) where:

• L is a logical language closed under negation (¬).
• R = Rs ∪ Rd is a set of strict (Rs) and defeasible (Rd) inference rules of the

form ϕ1, . . . , ϕn → ϕ and ϕ1, . . . , ϕn ⇒ ϕ respectively (where ϕi, ϕ are meta-
variables ranging over wff in L), andRs ∩Rd = ∅.

• n : Rd −→ L is a naming convention for defeasible rules.

The following notation is used ψ = −ϕ just in case ψ = ¬ϕ or ϕ = ¬ψ.

Definition 2. [Knowledge bases] A knowledge base in an AS = (L,R, n) is a set K ⊆
L consisting of two disjoint subsets Kn and Kp (the necessary and ordinary premises).

Intuitively, the necessary premises are certain knowledge and thus cannot be at-
tacked, whereas the ordinary premises are uncertain and thus can be attacked.

Definition 3. [Consistency and strict closure] For any X ⊆ L, let the closure of X
under strict rules, denoted Cl(X), be the smallest set containing X and the consequent
of any strict rule inRs whose antecedents are in Cl(X). Then a set X ⊆ L is

• directly consistent iff @ ψ, ϕ ∈ X such that ψ = −ϕ;
• indirectly consistent iff Cl(X) is directly consistent.

Arguments can be constructed step-by-step from knowledge bases by chaining in-
ference rules into trees. In what follows, for a given argument the function Prem returns



all its premises, Conc returns its conclusion and Sub returns all its sub-arguments, while
TopRule returns the last rule used in the argument.

Definition 4. [Argument] An argument A on the basis of a knowledge base K in an
argumentation system (L,R, n) is:

1. ϕ if ϕ ∈ K with: Prem(A) = {ϕ}; Conc(A) = ϕ; Sub(A) = {ϕ}; TopRule(A)
= undefined.

2. A1, . . . An →/⇒ ψ if A1, . . . , An are arguments such that Rs/Rd contains the
strict/defeasible rule Conc(A1), . . . , Conc(An)→/⇒ ψ.
Prem(A) = Prem(A1) ∪ . . . ∪ Prem(An), Conc(A) = ψ, Sub(A) = Sub(A1) ∪
. . . ∪ Sub(An) ∪ {A}; TopRule(A) = Conc(A1), . . . , Conc(An)→/⇒ ψ.

Each of these functions Func are also defined on sets of arguments S =
{A1, . . . , An} as follows: Func(S) = Func(A1)∪ . . .∪ Func(An). If an argument only
uses strict rules, the argument is said to be strict. Otherwise it is defeasible. If an argu-
ment only has necessary premises, then the argument is firm, otherwise it is plausible. An
argument A1, . . . , An → ϕ is called a strict argument over {Conc(A1), . . . , Conc(An)}
and it is a strict extension of A1, . . . , An. A basic defeasible argument is an argument,
which either has a defeasible top rule or is just an ordinary premise. The set of all basic
defeasible arguments of a set of arguments S is denoted with BD(S). The set of all
arguments that just consist of a necessary premise are denoted with NP (S).

Arguments can be attacked in three ways: on their premises (undermining attack),
on their conclusion (rebutting attack) or on an inference step (undercutting attack). The
latter two are only possible on applications of defeasible inference rules.

Definition 5. [Attack] A attacks B iff A undercuts, rebuts or undermines B, where:
• A undercuts argument B (on B′) iff Conc(A) = −n(r) and B′ ∈ Sub(B) such that
B′’s top rule r is defeasible.
• A rebuts argument B (on B′) iff Conc(A) = −ϕ for some B′ ∈ Sub(B) of the form
B′′1 , . . . , B

′′
n ⇒ ϕ.

• Argument A undermines B (on B′) iff Conc(A) = −ϕ for some B′ ∈ Sub(B) of the
form ϕ, ϕ ∈ Kp.

Argumentation systems and knowledge bases together form argumentation theories.

Definition 6. [Structured Argumentation Frameworks] Let AT be an argumentation
theory (AS,KB). A structured argumentation framework (SAF ) defined by AT , is a
triple 〈A, C, � 〉 where A is the set of all finite arguments constructed from KB in AS,
� is an ordering on A, and (X,Y ) ∈ C iff X attacks Y .

The notion of a defeat can then be defined as follows. Undercutting attacks succeed
as defeats independently of preferences over arguments, since they express exceptions
to defeasible inference rules. Rebutting and undermining attacks succeed only if the at-
tacked argument is not stronger than the attacking argument (A ≺ B is defined as usual
as A � B and B 6� A).

Definition 7. [Defeat] A defeats B iff A undercuts B or A rebuts/undermines B on B′

and A ⊀ B′.



Figure 1. Arguments and attack relations

Abstract argumentation frameworks are then generated from SAFs as follows:

Definition 8. [Argumentation frameworks] An abstract argumentation framework
(AF) corresponding to a SAF = 〈A, C, � 〉 is a pair (A, D) such that D is the defeat
relation on A determined by SAF .

2.1. The Problem Illustrated

The following abstract example illustrates the problems that can arise if the strict rules
are derived from classical logic.

Example 9. Let Rd = {p ⇒ q; r ⇒ ¬q; t ⇒ s}, Kp = ∅ and Kn = {p, r, t}, while
Rs consists of all propositionally valid inferences. Then the corresponding AF includes
the following arguments:
A1: p A2: A1 ⇒ q
B1: r B2: B1 ⇒ ¬q C: A2, B2 → ¬s
D1: t D2: D1 ⇒ s

See also Figure 1, which displays the arguments and the attack relations. Dotted lines
indicate defeasible inferences and dotted boxes indicate rebuttable conclusions.

Argument C attacks D2. Whether C defeats D2 depends on the argument ordering
but plausible argument orderings are possible in which C 6≺ D2 and so C defeats D2.
This is problematic, since s can be any formula, so any defeasible argument unrelated
to A2 or B2, such as D2, can, depending on the argument ordering, be defeated by C.
Clearly, this is extremely harmful, since the existence of just a single case of mutual
rebutting attack, which is very common, could trivialise the system.

In fact, the only semantics defined by Dung [14] that has problems with this example
is grounded semantics. SinceA2 andB2 attack each other and at least one of these attacks
will (with non-circular argument orderings) succeed as defeat, all preferred or stable
extensions contain either A2 or B2 but not both. And since both A2 and B2 attack C (by
directly attacking one of its subarguments), C is for each preferred or stable extension
defeated by at least one argument in the extension, so C is not in any of these extensions
so D2 is in all these extensions. However, if both A2 and B2 defeat each other, then
neither of them is in the grounded extension, so that extension does not defendD2 against
C and therefore does not contain D2.

Pollock [1,2] thought that this line of reasoning sufficed to show that his recursive-
labelling approach (which was later by [15] proved to be equivalent to preferred seman-
tics) adequately deals with this problem. However, Caminada [4] showed that the exam-
ple can be extended in ways that also cause problems for preferred and stable semantics.
Essentially, he replaced the facts p and r with defeasible arguments for p and r and let
both these arguments be defeated by a self-defeating argument. Since such self-defeating



arguments (if not themselves defeated) cannot be labelled in or out, their targets can also
not be labelled in or out. But then neither A2 nor B2 can be labelled in or out, since they
are both indirectly defeated by the self-defeating argument. Therefore neither A2 nor B2

will be in any preferred extension, so D2 cannot be defended against C.

3. Deriving ASPIC+’s Strict Rules from the Paraconsistent Logic W

In order to prevent the system from trivialising a natural approach is to replace classical
logic as the source for strict rules with a logic that invalidates the Ex Falso principle. A
logical consequence relation |= is said to be paraconsistent if it is not ‘explosive’, i.e.
when {a,¬a} |= b does not hold for any a and b. The idea of ASPIC+ is that strict rules
capture monotonic reasoning since attacks are not allowed on strictly derived conclu-
sions. Therefore, the logic used for instantiating the strict rules should be monotonic. In
this paper we explore the instantiation of ASPIC+ with a so-called weak consequence
relation originally proposed by [9], which is monotonic.

Definition 10. [Weak consequence relation, logic W ] Γ `W α if and only if there is a
maximal consistent subset ∆ of Γ such that ∆ ` α in classical logic.

(Note that the maximality condition is redundant because of Lindenbaum’s lemma,
which states that every consistent set can be extended to a maximally consistent set.) It
is easy to see that {a,¬a} `W b does not hold because {a,¬a} is not a maximal con-
sistent subset of {a,¬a}. Therefore, this consequence relation is paraconsistent. Below,
the (non-)satisfaction of three important properties are described.

[R] α ∈ Γ, then Γ `W α.
Each α ∈ Γ belongs to some maximally consistent subset ∆ of Γ. In classical logic, it
holds that if α ∈ ∆, then ∆ ` α. Therefore, it obviously holds that Γ `W α.

[Mon] Γ `W α, then Γ,Π `W α.
The monotonicity property can be proven as follows. There must be maximal consistent
subset ∆ of Γ such that ∆ ` α. Since ∆ ⊆ Γ∪Π, there must exist a maximal consistent
extension of ∆ in Γ ∪Π, ∆′, such that ∆′ ` α. Therefore, Γ,Π `W α.

[Cut] Γ, α `W β and Γ `W α, then Γ `W β.
This rule does not hold, which is shown by a counterexample. Take the set Γ = {a,¬a∧
b}. Then Γ `W b and Γ, b `W a ∧ b, while it is not the case that Γ `W a ∧ b.

Since the Cut rule does not hold, a naive instantiation of ASPIC+’s strict rules with
this logic W would lead to explosion:

Example 11. Take the following knowledge base Kp = {p,¬p, r}, Kn = ∅, instantiate
the strict rules with all valid inferences in the logic W and take Rd = ∅. Then the
following arguments can be constructed:
A1 : p A2 : A1 → p ∨ ¬r B : ¬p
C : A2, B → ¬r D : r

Argument C concludes with ¬r while Kp 0W ¬r. The underlying reason for this
problem is is that the Cut rule does not hold for `W . So if we want ASPIC+’s strict part
to behave according to `W , chaining of strict rules should be excluded.1 To this end, we
now redefine ASPIC+’s notion of an argument:

1A similar idea was suggested to us by Martin Caminada in personal communication.



Definition 12. [Argument? in ASPIC?] An argument? A on the basis of a knowledge
base K in an argumentation system (L,R, n) is:

1. ϕ if ϕ ∈ K with: Prem(A) = {ϕ}; Conc(A) = ϕ; Sub(A) = {ϕ}; TopRule(A)
= undefined.

2. A1, . . . An → ψ if A1, . . . , An are arguments? with a defeasible top rule or are
from K andRs contains the rule Conc(A1), . . . , Conc(An)→ ψ.

3. A1, . . . An ⇒ ψ if A1, . . . , An are arguments? and Rd contains the rule
Conc(A1), . . . , Conc(An)⇒ ψ.

For point 2 and 3: Prem(A) = Prem(A1) ∪ . . . ∪ Prem(An), Conc(A) = ψ, Sub(A) =
Sub(A1) ∪ . . . ∪ Sub(An) ∪ {A}; TopRule(A) = Conc(A1), . . . , Conc(An)→/⇒ ψ.

The rest of the framework remains unchanged. Moreover, from now on we assume
that L is a propositional language and that S → ϕ ∈ Rs iff S is finite and S `W ϕ.

4. Satisfaction of the Rationality Postulates

We next investigate whether the thus defined version of ASPIC+ satisfies the consis-
tency and closure postulates of [3]. Let E be any extension in the sense of [14] of an
argumentation framework in the sense of Definition 8. Then the postulates are:

Closure under Strict Rules: Conc(E) = Cl(Conc(E)).
Direct Consistency: Conc(E) is directly consistent.
Indirect Consistency: Cl(Conc(E)) is directly consistent.

Caminada, Amgoud, Modgil and Prakken [3,7,8] identify various sets of conditions
under which all these postulates are satisfied. Briefly, the postulates are satisfied if first,
the necessary premises are indirectly consistent and second, the strict rules are closed un-
der either transposition or contraposition and third, the argument ordering is ‘reasonable’
in a certain sense. These results are useless for our purposes since with `W as source
of the strict rules, the system does not satisfy closure under transposition or contrapo-
sition. In fact, [13] show that any monotonic consequence notion that satisfies closure
under transposition or contraposition will also satisfy explosion, while `W as shown
above does not satisfy explosion. We therefore adapt recent results of [13], who identify
weaker conditions for satisfaction of the postulates. The core of these conditions is that
any inconsistent set of formulas strictly implies the negations of all its members.

4.1. Logic-associated Argumentation Frameworks

Inspired by [16], [13] combine abstract argumentation with Tarskian abstract logics and
investigate among other things an instantiation with ASPIC+. Dung & Thang define a
slightly generalised version of abstract logics as follows:

Definition 13. [Abstract logic] Given a language L, an abstract logic is defined as a
pair (CN,CONTRA), where:

• CN : 2L −→ 2L is a Tarski-like consequence operator over L;
• CONTRA ⊆ 2L;



• for all sets of formulas X,Y ⊆ L it holds that:
- X ⊆ CN(X);
- CN(X) = CN(CN(X));
- CN(X) =

⋃
{CN(Y )|Y ⊆ X and Y is finite};

- if X ∈ CONTRA then each superset of X also belongs to CONTRA. A set
belonging to CONTRA is said to be contradictory;
- CN(∅) is not contradictory, i.e., CN(∅) 6∈ CONTRA.

A set X ⊆ L is inconsistent if its closure CN(X) is contradictory, otherwise X is
consistent. X is closed if it coincides with its own closure CN(X).

Definition 14. [Logic-associated argumentation framework] A logic-associated ar-
gumentation framework (LAF ) over a language L is (AF,v, AL,Cnl), where:

• AF is an abstract argumentation framework.
• AL = (CN,CONTRA) is an abstract logic over L.
• Cnl : A −→ L assigns to each argument A, its conclusion Cnl(A) in L.
• v is a partial order over A where A v B means that A is a subargument of B

such that for all arguments C ∈ A, if C attacks A then C attacks B.

4.2. Instantiating LAFs with ASPIC+

Dung and Thang investigate an instantiation of LAF s with a version of ASPIC+ with no
preferences and a language consisting just of propositional literals. TheAF is essentially
defined as in Definition 8 above. They leave the knowledge base empty and represent
facts F as strict rules→ F . It is easy to see that this is equivalent with instead putting
F in Kn. They then define CONTRAAS as the collection of all sets containing both p
and ¬p for some atom p. They define the consequence operator CNAS in effect as ClRs

in ASPIC+ (see Definition 3 above) and define the Cnl operator as ASPIC+’s Conc

operator.
We now redefine their instantiation of LAFs with ASPIC+for two reasons. First,

we have changed ASPIC+’s definition of an argument by forbidding chaining of strict
rules. Second, because of this the notion of closure of a set of conclusions under strict
rule application has to be changed, since we now want to exclude chaining of strict rules
when considering such a closure. First we define for any set S of arguments?, S# as the
set of all basic defeasible arguments together with all necessary premises in S. Then the
new definition of closure and indirect consistency are as follows.

Definition 15. [Closure] For anyX ⊆ L, let the closure ofX under strict rules, denoted
ClRs(X), be the smallest set containing X and the consequent of any strict rule in Rs

whose antecedents are in X .
The set of arguments? S is said to be closed iff Conc(S) = ClRs

(Conc(Sub(S)#)).

Definition 16. [Indirect consistency] A set X ⊆ L is indirectly inconsistent if there is
a ϕ ∈ L such that ϕ,¬ϕ ∈ ClRs

(X). A set of arguments? S is said to be inconsistent
(consistent) if Conc(Sub(S)#) is indirectly inconsistent (resp. indirectly consistent).

We now investigate satisfaction of the strict-closure and indirect-consistency postu-
lates as formulated with these redefined notions (direct consistency follows from indirect
consistency). Below “consistency postulate” refers to the indirect-consistency postulate.



[13]’s instantiation with ASPIC+is without preferences and for languages consisting
of literals. It turns out that their results can be easily generalised to the case with pref-
erences included and for richer languages. Their proofs do not rely at all on the literal
language so directly apply to any logical language. The same holds with preferences for
their results on strict closure. Moreover, if the argument ordering is reasonable in the
sense of [8] (see Definition 26 below), then their results also generalise to preferences.
Because of space limitations we omit the proof of this result.

We can now now use [13]’s results as a guidance for proving the closure and con-
sistency postulate for the logic W . At first sight, reusing [13]’s results would not seem
to be possible since `W does not satisfy idempotence (as shown by the counterexample
to the Cut rule) and is therefore not an abstract logic. However, upon closer inspection
it turns out that [13]’s results on ASPIC+ do not use this property at all. It is then left to
verify that their results still hold for the adapted notion of closure and its related adapted
notion of (indirect) consistency.

We now adapt when necessary the definitions of [13] to the new notions of closure
and consistency and then verify their results for the adapted definitions.

Definition 17. [Argument? base] A set of arguments? BA is a base of an argument?

A if the conclusion of A is a consequence of the conclusions of BA (i.e., if Conc(A) ∈
ClRs

(Conc(BA))) and if each defeater2 of A is a defeater of BA and vice versa.

In the example of Figure 1, the set {A2, B2} is a base of C.

Definition 18. [Generated arguments?]

• An argument? A is generated by a set of arguments? S if there is a base BA of
A such that BA ⊆ Sub(S).

• The set of all arguments? generated by S is denoted by GN(S).

Definition 19. [Compact] An argumentation framework (AF ) is compact if for
each set of arguments? S, GN(S) is closed. This is equal to Conc(GN(S)) =
ClRs

(Sub(GN(S)#).

Theorem 20. Let E be a complete extension, then GN(E) = E.

Proof. First note that according to Definition 18 for each set S of arguments? Sub(S) ⊆
GN(S). Therefore E ⊆ GN(E).
Suppose now that an argument? C defeats an argument? A ∈ GN(E). LetBA be a base
of A such that BA ⊆ Sub(E), then C defeats BA. Hence C defeats Sub(E) and so it
defeats E. Since E is a complete extension, every defeat against E is counter defeated
by E. A is defended by E, so A ∈ E. Therefore GN(E) ⊆ E.

Theorem 21. Each compact AF satisfies the closure postulate.

Proof. Let E be a complete extension. The compactness implies that GN(E) is closed.
From Theorem 20 E is closed.

Theorem 22. If the strict rules of an ASPIC? AF are instantiated with all valid infer-
ences of the logic W , then AF is compact.

2Note that Dung and Thang’s notion of attack is renamed as defeat.



Proof. [Conc(GN(S)) ⊇ ClRs
(Sub(GN(S))#)]

Let S be a set of arguments? and σ ∈ ClRs(Sub(GN(S))#). It needs to be shown
that σ ∈ Conc(GN(S)). Let X be a minimal subset of Conc(Sub(GN(S))#) such that
σ ∈ ClRs(X). Hence there is a strict argument? A0 over X with conclusion σ. Further
let SX be a minimal set of arguments? from Sub(GN(S))# s.t. Conc(SX) = X . Let A
be the argument? obtained by replacing each leaf in A0 (viewed as a proof tree) labelled
by a literal α from X by an argument? with conclusion α from SX . Note that this is
possible since all arguments? in SX are basic defeasible arguments or are just necessary
premises. It is obvious that the conclusion of A is σ. We show that SX is a base of A.
Suppose B is an argument? defeating A. Since A0 is a strict argument? over X , B must
defeat a basic defeasible subargument in SX . Hence B defeats SX . Thus A ∈ GN(S).
Hence σ ∈ Conc(GN(S)).
[Conc(GN(S)) ⊆ ClRs

(Sub(GN(S))#)]
Suppose σ ∈ Conc(GN(S)), then it has to be shown that σ ∈ ClRs

(Sub(GN(S))#).
σ ∈ Conc(GN(S)) means that there is an argument? A ∈ GN(S) with Conc(A) = σ.
Suppose A is of the form ⇒ σ or σ ∈ Kp, then A ∈ BD(Sub(GN(S))) and thus
A ∈ Sub(GN(S))#.
Suppose A is of the form → σ or σ ∈ Kn, then σ ∈ ClRs(∅) or σ ∈ NP (GN(S))
respectively, so σ ∈ ClRs

(Sub(GN(S))#).
Suppose A is of the form A1, . . . , An ⇒ σ, then A ∈ BD(Sub(GN(S))) and thus
A ∈ Sub(GN(S))#.
Finally, suppose A is of the form A1, . . . , An → σ, then since A1, . . . , An are ba-
sic defeasible arguments A1, . . . , An ∈ Sub(GN(S))#. It can be concluded that
σ ∈ ClRs

(Sub(GN(S))#).
Therefore σ ∈ ClRs(Sub(GN(S))#), so we have proved that AF is compact.

Definition 23. [Cohesive] An AF is cohesive if for each inconsistent set of arguments?

S, GN(S) is conflicting.

Theorem 24. Each cohesive AF satisfies the consistency postulate.

Proof. Let E be a complete extension. Suppose E is inconsistent. From cohesion, it
follows that GN(E) is conflicting. Theorem 20 states that then E must be conflicting.
This is a contradiction so E is consistent.

Definition 25. [Self-contradiction axiom] AnAF satisfies the self-contradiction axiom
if for each minimal inconsistent set X ∈ L it holds that for all σ ∈ X , ¬σ ∈ ClRs

(X).

Definition 26. [Reasonable argument ordering, [8]] � is a reasonable argument or-
dering if and only if:

• ∀A,B, if A is strict and firm and B is plausible of defeasible, then B ≺ A;
• ∀A,B, if B is strict and firm, then B ⊀ A;
• ∀A,A′, B,C, such that C ≺ A, A ≺ B and A′ is a strict extension of {A}, then
A′ ≺ B, C ≺ A′;

• Let {C1, . . . , Cn} be a finite subset of A and for i = 1, . . . , n let C+/i be some
strict extension of {C1, . . . , Ci−1, Ci+1, . . . , Cn}. Then it is not the case that
∀i, C+/i ≺ Ci.



Theorem 27. If a compact AF has a consistent Kn and a reasonable argument ordering
and satisfies the self-contradiction axiom, then AF is cohesive.

Proof. Let S be an inconsistent set of arguments? and take a minimal inconsistent subset
S′ of Sub(S). Definition 16 combined with consistency of Kn and its minimality causes
that S′ 6= ∅ only contains basic defeasible arguments or necessary premises. Remark
that S′ cannot consist of only necessary premises because of consistency of Kn. Since
AF satisfies the self-contradiction axiom, for all σ ∈ Conc(S′) it holds that ¬σ ∈
ClRs(Conc(S′)). Let B be the weakest argument of S′ with Conc(B) = σ. Note that B
cannot be an ordinary premise because of the reasonable argument ordering and the fact
that S′ must contain basic defeasible arguments. From compactness combined with the
fact that ¬σ ∈ ClRs

(Conc(S′)) it follows that ¬σ ∈ Conc(GN(S′)). Therefore, there
is an argument? A ∈ GN(S′) such that Conc(A) = ¬σ. HenceA attacksB. The base of
A is S′, so if A is defeated by some argument then S′ must be under defeat. Therefore,
it can be concluded that all basic defeasible subarguments of A are in S′. The fact that
B is the weakest argument of S′ in combination with the reasonable argument ordering
implies that A ⊀ B. This means that A defeats B. Since B ∈ S′ ⊆ GN(S′) ⊆ GN(S),
GN(S) is conflicting. Therefore, AF is cohesive.

Theorem 28. If the strict rules of an ASPIC? AF are instantiated with all valid infer-
ences of the logic W , then the AF satisfies the self-contradiction axiom.

Proof. It has to be proved that for every minimal inconsistent set X ⊆ L it holds that for
each σ ∈ X , ¬σ ∈ ClRs(X). Let X be a minimally inconsistent set and take S = X\σ.
Note that S is a maximal consistent subset of X and that S, σ ` ⊥ (where ` denotes
classical entailment). By the deduction theorem for classical logic S ` σ ⊃ ⊥, which
implies S ` ¬σ. Since S is a maximal consistent subset of X , X `W ¬σ. This holds
for every σ ∈ X , so ¬σ ∈ ClRs

(X). It can be concluded that AF satisfies the self-
contradiction axiom.

Combining Theorem 21, 22, 24, 27 and 28 gives the following important conclusion.

Theorem 29. If the strict rules of an ASPIC? AF are instantiated with all valid infer-
ences of the logic W and if AF has consistent Kn and a reasonable argument ordering,
then AF satisfies the closure and consistency postulate.

5. Conclusion

In this paper a long standing problem in the logical study of combined deductive and
defeasible reasoning has been solved. The ASPIC+ framework has been combined with
the logic W [9] in a way that prevents trivialisation in case of rebutting arguments while
preserving known results on consistency and strict closure. To obtain these results, the
ASPIC+ framework had to be adapted by prohibiting the chaining of strict rules, since the
W logic does not satisfy the cut rule. In future research we intend to extend these results
by investigating satisfaction of [5]’s postulates of non-interference and crash-resistance
(like in [6]).

Since the logic W is monotonic, ASPIC? as defined above allows for irrelevant ar-
guments. For example, not only p→ p∨q is included inRs but also p, r → p∨q for any



r. In [17] versions of ASPIC? (and also ASPIC+) are investigated in which strict rules
can only be applied to subset-minimal sets of formulas (clearly, this condition cannot
be imposed on application of defeasible rules, since more specific defeasible rules are
usually stronger than their less specific versions). It turns out that this minimality con-
dition does not affect the outcomes on the natural assumption that arguments cannot be
made weaker by deleting redundant subarguments from a strict-rule application. Similar
investigations were made in the context of assumption-based argumentation by [18]. The
combined results of the present paper and [17] shed light on the relation between ASPIC?

and classical argumentation as studied by [11], in which arguments are essentially clas-
sical proofs from consistent and subset-minimal subsets of a classical knowledge base:
with the minimality condition on strict-rule application ASPIC? is a proper extension of
classical argumentation with defeasible rules and preferences.
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