
Revisiting Support in Abstract
Argumentation Systems

Sylwia POLBERG a,1, and Nir OREN b

a Vienna University of Technology, Institute of Information Systems
Favoritenstraße 9-11, 1040 Vienna, Austria

b University of Aberdeen, AB24 3UE, Aberdeen, UK

Abstract. Dung’s original argumentation frameworks have been extended in vari-
ous ways. One such extension introduces positive interactions, or support, between
arguments. Frameworks containing evidential, necessary, and deductive supports
have been proposed, and it is natural to compare these and analyse whether trans-
lations between these are possible. Although a positive answer was given in the
necessary and deductive cases, it was claimed that evidential support cannot be ex-
pressed by any other type and that it cannot be handled together with them in a
single framework. In this paper we show that it is not the case and that there ex-
ists a natural translation between argumentation frameworks with necessities and
evidential argumentation systems.
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1. Introduction

Dung’s abstract argumentation frameworks (abbreviated AF) [5] focuses on the attack re-
lation between arguments, and the manner in which arguments defend each other. Many
extensions to basic AFs have been proposed, utilising concepts such as preferences, as
well positive interactions between arguments (referred to as support). An initial version
of support, introduced in [3] had several drawbacks, leading to the development of sev-
eral other more specialised frameworks with support, with the most recognised being de-
ductive [2], necessary [6], and evidential [9] supports. [4] showed that a translation exists
between deductive and necessary support, but claimed that evidential support cannot be
represented using the other two approaches. In this paper we show that there is a transla-
tion between evidential argumentation systems and argumentation frameworks with ne-
cessities. We begin by recalling Dung’s AFs, with Sections 3 and 4 describing eviden-
tial argument frameworks and abstract frameworks with necessities. Section 5 compares
these systems, and describes a translation between them. Section 6 concludes.

2. Dung’s Frameworks

We will briefly recall Dung’s abstract argumentation framework [5] and its semantics [1].
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Definition 2.1. A Dung’s abstract argumentation framework (AF for short) is a pair
(A,R), where A is a set of arguments and R⊆ A×A represents an attack relation.

Definition 2.2. Let AF = (A,R) be a Dung’s framework. We say that an argument a ∈ A
is defended by a set S ⊆ A in AFif for each b ∈ A s.t. (b,a) ∈ R, there exists c ∈ S s.t.
(c,b) ∈ R. A set S⊆ A is:

• conflict–free in AF iff for each a,b ∈ S, (a,b) /∈ R.
• naive in AF iff it is maximal w.r.t. set inclusion conflict–free.
• admissible in AF iff it is conflict–free and defends all of its members.
• preferred in AF iff it is maximal w.r.t. set inclusion admissible.
• complete in AF iff it is admissible and all arguments defended by S are in S.
• stable in AF iff it is conflict–free and for each a ∈ A \ S there exists an argument

b ∈ S s.t. (b,a) ∈ R.

Definition 2.3. The characteristic function FAF : 2A→ 2A is defined as: FAF(S) = {a | a
is defended by S in AF}. The grounded extension is the least fixed point of FAF .

Lemma 2.4. Dung’s Fundamental Lemma Let S be an admissible extension, a and b
two arguments defended by S. Then S′ = S∪{a} is admissible and b is defended by S′.

Theorem 2.5. The following holds:
1. Every stable extension is a preferred extension, but not vice versa.
2. Every preferred extension is a complete extension, but not vice versa.
3. The grounded extension is the least w.r.t. set inclusion complete extension.

3. Evidential Argumentation Systems

Unattacked arguments serve as the strongest source of defence within AFs. However, in
many cases, the lack of an attack is insufficient to consider an argument acceptable. In
areas such as legal reasoning, one is required to support a claim with facts or evidence so
as to be convincing. For example, it does suffice to claim that a given person committed
a crime in order to sentence them. Instead, evidence is required to prove guilt.

We can therefore distinguish between two types of arguments. The special argu-
ments, often referred to as prima facie or evidence, act as an indisputable source of truth,
while standard arguments must be supported by them in order to be considered accept-
able. To handle such reasoning, the evidential argumentation systems (EASs) were cre-
ated. Furthermore, since standard arguments must be supported, evidential frameworks
address a critical drawback of abstract support in BAFs [3], namely that an argument
could otherwise be present in an extension regardless of whether it is supported (see [8]
for details). In this section, we introduce the evidential framework and its properties. In
doing so, we provide corrections to the EAS formulation presented in [9, 10].

Definition 3.1. An evidential argumentation system (EAS) is a tuple (A,R,E) where A
is a set of arguments, R⊆ (2A \ /0)×A is the attack relation, and E ⊆ (2A \ /0)×A is the
support relation. We distinguish a special argument η ∈ A s.t. 6 ∃(X ,y) ∈ R where η ∈ X;
and 6 ∃X where (X ,η) ∈ R or (X ,η) ∈ E.

The special argument η represents prima facie arguments and is referred to as evi-
dence or environment. This definition differs from [10] by removing the rction that there
should be no argument x and set X s.t. XRx and XEx.



The core idea of evidential argument systems is that valid arguments (and attackers)
need to trace back to the environment. It is captured with the notions of e–support and
e–supported attack. The following are the corrected versions of those in [9, 10].

Definition 3.2. An argument a ∈ A has evidential support (e–support) from a set S ⊆ A
iff a = η or there is a non-empty S′ ⊆ S such that S′Ea and ∀x ∈ S′, x has evidential
support from S \ {a}. An argument a has minimal e–support from a set S if there is no
set S′ ⊂ S such that a has e–support from S′.

Remark. Note that by this definition η has evidential support from any set.

Example 3.3. In its original version [9], the definition of being e–supported by a set
S required that either SEa where S = {η} or that ∃T ⊂ S s.t. T Ea and ∀x ∈ T , x is
e–supported by S \ {x}. This led to counter-intuitive results with frameworks such as
({η ,a,b,c}, /0,{({a,b},c),({η},a),({η},b)}).

Definition 3.4. A set S ⊆ A carries out an evidence supported attack (e–supported at-
tack) on a iff (S′,a) ∈ R where S′ ⊆ S, and for all s ∈ S′, s has e–support from S. An
e–supported attack by S on a is minimal iff there is no S′ ⊂ S that carries out an e–
supported attack on a.

Given these notions, we can define semantics for EASs built around the concept of
acceptability in a manner similar to those of Dung’s. However, in the latter, only attacks
were considered. For EASs, arguments must also have sufficient support to be acceptable.

Definition 3.5. An argument a is acceptable with respect to a set of arguments S⊆ A iff
• a is e–supported by S; and
• given a minimal e–supported attack by a set T ⊆ A against a, it is the case that S

carries out an e–supported attack against a member of T .

Remark. The definition above is simpler than the one proposed in [9], but provides us
with the same result.

Definition 3.6. A set of arguments S⊆ A is:
• self–supporting iff all arguments in S are e–supported by S.
• conflict–free iff there is no a ∈ S and S′ ⊆ S such that S′Ra.
• admissible iff it is conflict–free and all elements of S are acceptable w.r.t. S.
• preferred iff it is maximal w.r.t. set inclusion admissible.
• complete iff it is admissible and all arguments acceptable w.r.t S are in S.
• stable iff it is conflict–free, self–supporting, and for any argument a e–supported

by A where a /∈ S, S e–support attacks either a or every set of arguments minimally
e–supporting a.

As in AFs, the grounded semantics is defined via an identical characteristic function. We
avoid formalising it due to space constraints, but refer the reader to Definition 2.3. Next,
we describe the properties of EASs [8, 9]. Proofs can be found in [12].

Lemma 3.7. If a set of arguments S ⊆ A is a minimal e–support for some argument
a ∈ A, then it is self–supporting.

Lemma 3.8. If S⊆ A is admissible, then it is self–supporting.



Lemma 3.9. EAS Fundamental Lemma Let S be an admissible set and x,y two argu-
ments acceptable w.r.t. S. Then S∪{x} is admissible and y is acceptable w.r.t. S∪{x}.

Lemma 3.10. Set S is an e–stable extension iff S= {a | a is e–supported and not attacked
by S}

Lemma 3.11. If a set of arguments S ⊆ A carries out a minimal e–supported attacked
on some argument a ∈ A, then it is self–supporting.

Theorem 3.12. The following holds:
1. Every stable extension is a preferred extension, but not vice versa.
2. Every preferred extension is a complete extension, but not vice versa.
3. The grounded extension is the least complete extension w.r.t. set inclusion.

Example 3.13. Consider the EAS ({η ,a,b,c,d,e, f}, {({b},a),({b},c),({c},b), ({c},d),
({d}, f ), ({ f}, f )}, {({η},b),({η},c),({η},d),({η}, f ),({d},e)}) The admissible
extensions are /0,{η},{η ,b},{η ,c},{η ,b,d} and {η ,b,d,e}, with {η},{η ,c} and
{η ,b,d,e} being the complete ones. Obviously, the latter two are preferred. However,
only {η ,b,d,e} is stable. Since a is not a valid argument (it is not e–supported in the
framework), we do not have to attack it. Although {η ,c} attacks b and d (and by this,
also e), it is not in conflict with f . The grounded extension is just {η}.

We propose an alternative definition of e–support, more in line with the style found
in [6,11], and the argument chains of [10]. We also introduce a minimal form of an EAS.

Definition 3.14. Given a set of arguments X ⊆ A, an evidential sequence for an argu-
ment a ∈ X is a sequence of distinct elements of X (a0, ..,an) s.t. an = a, a0 = η , and if
n > 0, then ∀n

i=1 there exists a nonempty T ⊆ {a0, ...,ai−1} s.t. T Eai.

Theorem 3.15. Let X ⊆ A be a set of arguments and a ∈ A. a is e–supported by X iff
there exists an evidential sequence for a on X ∪{a}.

Theorem 3.16. Let ES = (A,R,E) be an EAS. The minimal form of ES is a framework
ESmin = (A,R′,E ′), where R′ ⊆ R (respectively E ′ ⊆ E) consists of those elements (T,a)
in R (E) s.t. 6 ∃T ′ ⊆ T,(T ′,a) ∈ R (E). Then a set S is a σ–extension in ES where σ ∈
{admissible, preferred, complete, grounded,stable } iff it is a σ–extension in ESmin.

4. Abstract Frameworks with Necessities

[7] introduced necessary support, following the intuition that if an argument a necessar-
ily supports b, then acceptance of a is required for the acceptance of b. Although initially
defined in a binary manner, [6] removed this restriction.

Definition 4.1. An abstract argumentation framework with necessities (AFN) is a tuple
(A,R,N) where A is a set of arguments, R ⊆ A×A represents the attack relation and
N ⊆ (2A \ /0)×A represents the necessity relation.

We say that a attacks b iff aRb. Abusing notation, we will write SRC to denote that
there exists an argument a ∈ S and b ∈C such that aRb.

While the support relation of EASs and AFNs are structurally identical, they capture
different intuitions. In EASs, we say that a set of arguments S⊆ A supports an argument



a∈ A if ∃X ⊆ S s.t. XEa. In AFNs, we are presented with a dual situation. S supports a if
∀X ⊆ S s.t. XNa, X∩S 6= /0. This will be especially visible when we present the definition
of a powerful sequence (Defn 4.2) and a translation between the two frameworks.

While EAS semantics imply acyclicity of the support relation among the accepted
arguments through the requirement for evidence η , AFNs make this requirement explicit.
One of the possible formulations for doing so is by the means of the powerful sequence:

Definition 4.2. An argument a is powerful in S ⊆ A iff a ∈ S and there is a sequence
a0, ...,ak of elements of S such that:

• ak = a
• there is no E ⊆ A s.t. ENa0
• for 1≤ i≤ k: for each E ⊆ A, if ENai then E ∩{a0, ...,ai−1} 6= /0.

A set of arguments S ⊆ A is coherent iff each a ∈ S is powerful in S. A set of arguments
is strongly coherent iff it is coherent and conflict–free w.r.t. R.

Remark. There is a subtle difference between the sequences in AFNs (Defn. 4.2) and
EASs (Defn. 3.14). The former states that if a supporter set exists, then it has an element
in the sequence. The evidential sequence requires that a supporter exists and is contained
in the sequence. This results from the fact that every valid argument (apart from η) needs
to be supported by some set in the first place to even have a chance of tracing back to
evidence. Thus, unsupported arguments are ”filtered out” immediately.

Just like in EASs, the definition of defense (acceptability) in AFNs extends Dung’s
definition by introducing support requirements. Semantics are then defined as usual.

Definition 4.3. Let S⊆ A and a ∈ A. We say that S defends a iff S∪{a} is coherent and
for each b ∈ A, if bRa then for each coherent C ⊆ A that contains b, SRC. We say S is:

• admissible iff it is strongly coherent and defends all of its arguments.
• preferred iff it is maximal w.r.t. set inclusion admissible.
• complete iff it is admissible and all arguments defended by S are in S.

The grounded semantics is again defined via the characteristic function (2.3). We can
now define the stable semantics, and show some properties of AFNs. Just like in EASs,
we will also introduce the concept of a minimal form of an AFN.

Definition 4.4. The set of arguments deactivated by S is defined by S+ = {a | SRa or
there exists E ⊆ A s.t. ENa and S∩E = /0}. Then a complete extension S is stable iff
S+ = A\S.

Theorem 4.5. The following properties holds:
1. Every stable extension is a preferred extension, but not vice versa.
2. Every preferred extension is a complete extension, but not vice versa.
3. The grounded extension is the least w.r.t. set inclusion complete extension.

Example 4.6. Consider the AFN ({a,b,c,d,e}, {(b,a),(e,a), (c,d)}, {({b},b),({b,d},e),
({a},c)}). The admissible (also complete) extensions of this framework would be {d,e},
{a,c} and /0. The first two are the preferred and stable ones. /0 is the grounded extension.

Theorem 4.7. Let FN = (A,R,N) be an AFN. The minimal form of FN is a framework
FNmin = (A,R,N′), where N′ ⊆ N consists of those elements (T,a) in N s.t. 6 ∃T ′ ⊆
T,(T ′,a) ∈ N. Then a set S is a σ–extension in FN where σ ∈ {admissible, preferred,
complete, grounded, stable} iff it is a σ–extension in FNmin.



5. Translations between evidential and necessary support

We now investigate translation procedures between necessary and evidential frameworks.
It is obvious that moving from the binary (AFN) to set-form (EAS) of attack is trivial.
Support however requires more consideration. First of all, recall the differences between
support in AFNs and EASs, i.e. the N vs E relation. Let A1, ...,An be sets supporting
an argument a in N. We say that a set of arguments S supports a iff for every such Ai,
S∩Ai 6= /0. Verifying whether S supports a corresponds to checking whether S satisfies a
propositional formula

∨
A1∧ ...∧

∨
An, where

∨
Ai should be understood as a disjunction

of elements of Ai. Should A1, ...,An be supporting a by E, we would produce a formula∧
A1 ∨ ...∨

∧
An, where

∧
Ai stands for the conjunction of elements of Ai. Therefore, a

translation between these relations can be seen as a conversion between CNF and DNF.
More difficult is dealing with evidence. In EASs, evidence is the sole confirmation of
validity and arguments need to be able to trace back to it (c.f., the evidential sequence). In
AFNs, validity is obtained through acyclicity. We must be able to trace back from a valid
argument to arguments that require no support (c.f., the powerful sequence). Therefore,
for unsupported arguments to provide validity in the EAS setting, they (and only they)
should be backed up by η . This observation allows us to define a translation as follows.

Translation 1. Let FN = (A,R,N) be an AFN. The corresponding EAS ESFN =
(A′,R′,E) is created as follows: (1) A′ = A∪{η}. (2) For every two arguments a, b s.t.
(a,b) ∈ R, put ({a},b) in R′. (3) Let a be an argument in A and Z = {Z1, ..,Zn} be a
collection of all sets Zi s.t. ZiNa. If Z is empty, add ({η},a) to E. Otherwise, for every
subset Z′ of

⋃n
i=1 Zi s.t. ∀n

i=1 Z′∩Zi 6= /0, add (Zi,a) to E.

While correct (see Theorem 3.16), this translation can create redundant elements in E.
We therefore propose the following translation instead.

Translation 1 (Continued). Let a be an argument in A and Z = {Z1, ..,Zn} be a collection
of all sets Zi s.t. ZiNa. If Z is empty, add ({η},a) to E. Otherwise, for all Z′ in Z1× ...×
Zn, add (Z′S,a) to E, where Z′S is the set of all elements in Z′.

Theorem 5.1. An argument a is powerful in S∪{a} ⊆ A in FN iff it is e–supported by
S∪{η} in ESFN . S is coherent in FN iff S∪{η} is self–supporting in ESFN .

There is an important difference between the definitions of defense (acceptability) in
EASs and AFNs concerning support. In EASs, an argument a has to be e–supported by
the set S. Consequently, it does not have to be the case that S∪{a} is self–supporting. In
AFNs it is required that S∪{a} is coherent, which by Theorem 5.1 is visibly a stronger
restriction. However, in order to have a chance to be an extension, a set has to be coherent
(self–supporting) in the first place. Therefore, we focus on such sets in our analysis.

Theorem 5.2. Let S ⊆ A (S∪ {η} once translated into an EAS) be a coherent (self–
supporting) set in FN (ESFN). An argument a ∈ A is defended by S in FN iff it is accept-
able w.r.t S∪{η} in ESFN .

Theorem 5.3. Let FN = (A,R,N) be an AFN and ESFN = (A′,R′,E) its corresponding
EAS. Then a set S is a σ–extension in FN where σ ∈ {admissible, preferred, complete,
grounded, stable} iff S∪{η} is a σ–extension in ESFN .



Example 5.4. Consider the AFN of 4.6 above. By Translation 1 we obtain its EAS
(({η ,a,b,c,d,e}, {({b},a), ({e},a), ({c},d)}, {({b},b), ({b},e),({d},e),({a},c)}),
({η},a),({η},d)}). The maximal self–supporting sets are {η ,a,c} and {η ,d,e}, thus
b is correctly recognized as invalid. Our admissible extensions are /0,{η},{η ,a,c} and
{η ,d,e}. It is easy to see they satisfy the completeness criterion as well. The latter two
are also preferred and stable. Our grounded extension is {η}. Our results thus agree for
both the AFN and translated EAS.

Since AFNs consider binary attacks, translation from EASs to AFNs requires the in-
troduction of virtual arguments. This aspect of the translation is trivial but cumbersome,
and due to space constraints, we focus on the translation of support between the two
frameworks, illustrating the process through an example.

The differences between the E and N sets require a shift between relations similar to
the one in Translation 1. The biggest difficulty here is the handling of η . Within EASs,
η is the sole confirmation of ”truth”. Its presence at the start of an evidential sequence
is required for argument validity. Arguments not supported by η act as (invalid) self–
supporters. Due to AFNs acyclicity requirements, such an argument would be invalid.

This intuition can also be considered from a more structural point of view. Since
any powerful sequence originates at an argument that requires no support, the translation
from EASs to AFNs should ensure that η is the only argument meeting this require-
ment. Consequently, any other argument that requires no support in the EAS should be
disqualified in its corresponding AFN, which is achieved easily by using a support cycle.

In order to omit the attack issues between EASs and AFNs, let us focus on a subclass
of EASs that uses only binary conflicts, i.e. where every set of arguments S s.t. SRa for
some a ∈ A, consists of a single element. We denote it by EASbin.

Translation 2. Let ES = (A,R,E) be an EASbin. The corresponding AFN FNES =
(A,R′,N) is created as follows: (1) The set of arguments remains the same. (2) For every
two arguments a, b s.t. ({a},b) ∈ R, put (a,b) in R′. (3) Let a 6= η be an argument in A
and Z = {Z1, ..,Zn} be a collection of all sets Zi s.t. ZiEa. If Z is empty, add ({a},a) to
N. Otherwise, for every subset Z′ of

⋃n
i=1 Zi s.t. ∀n

i=1 Z′∩Zi 6= /0, add (Zi,a) to N.

Although the translation is correct in the sense that extensions produced by the frame-
works coincide, redundancies can occur. Assuming minimality of Z′ sets would remove
some redundancy, while maintaining correctness (Theorems 4.7 and 3.16)..

Theorem 5.5. An argument a is e–supported by S⊆ A in ES iff it is powerful in S∪{a}
in FNES. S is self–supporting in ES iff it is coherent FNES.

Theorem 5.6. Let S⊆ A be a self–supporting (coherent) set in ES (FNES). An argument
a ∈ A is acceptable w.r.t. S in ES iff it is defended by S in FNES.

Theorem 5.7. Let ES = (A,R,E) be an EASbin and FNES = (A,R′,N) its corresponding
AFN. Then a set S is a σ–extension in ES where σ ∈ {admissible, preferred, complete,
grounded, stable} iff it is a σ–extension in FNES..

Example 5.8. We can now construct an AFN (A,R,N) corresponding to the EAS of Ex-
ample 3.13. The set of arguments remains the same and A is simply {η ,a,b,c,d,e, f}.
Since the EAS has only binary attacks, we can copy them across from the EAS to
R. In this example, the necessity relation is N = E ∪ {(a,a)}. a is the only argument
that is not supported by anything at all in the EAS. Our admissible extensions are now



/0,{η},{η ,b},{η ,b,d},{η ,b,d,e} and {η ,c}, which are exactly the same as in for the
EAS. The AFN’s complete extensions are {η},{η ,b,d,e} and {η ,c} and again we ob-
tain correspondence. The same trivially follows for the preferred semantics. It is easy to
see that the stable set is also {η ,b,d,e} and the grounded {η}.

Example 5.9. Similarly, consider the AFN of Example 4.6, and the EAS obtained in Ex-
ample 5.4. Let us now shift it back to AFN form via Translation 2. The produced frame-
work, FN2, is ({η ,a,b,c,d,e}, {(b,a),(e,a), (c,d)}, {({b},b), ({b,d},e),({a},c)}),
({η},a),({η},d)}) Therefore, we retrieve the original AFN extended with evidence
and the resulting relations. We obtain four admissible extensions – /0,{η},{η ,a,c} and
{η ,d,e}, out of which only /0 is not complete. {η ,a,c} and {η ,d,e} are the preferred
and stable extensions. By removing η from the sets we retrieve the extensions of FN1.

6. Discussion and Conclusions

This paper’s examined the differences and similarities between support as used within
Evidential Argument Systems and Argumentation Frameworks with Necessities. We pro-
vided a translation between AFNs and EASs and analyzed a possible translation going
in the other direction. Additionally, we identified correspondences between the proper-
ties of both of these systems to the properties obtained in Dung’s argumentation system.
Finally, we corrected some important errors in the definitions of EASs.

We are pursuing several avenues of future work. First, as suggested above, we intend
to fully formalize the translation from EASs to AFNs. Second, we wish to provide a
mapping between the remaining types of support (deductive and abstract) to the systems
discussed here (c.f. [4, 10]). Finally, we wish to identify a system useful for handling
support as used by a knowledge engineer.
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